C++如何实现广义表详解

以下给出几种简单的广义表模型:

由上图我们可以看到,广义表的节点类型无非headvaluesub三种,这里设置枚举类型,利用枚举变量来记录每个节点的类型:

enum Type
{
  HEAD,  //头节点
  VALUE, //值节点
  SUB,  //子表节点
};

每个节点都有自己的类型以及next指针,除此之外,如果该节点是VALUE类型还要分配空间存储该节点的有效值;但是若该节点是SUB类型,就需定义一个指针指向子表的头。

这里我们可以用联合来解决这个问题。

(联合(或共同体)是一种不同数据类型成员之间共享存储空间的方法,并且联合体对象在同一时间只能存储一个成员值)

构造节点:

struct GeneralizedNode
{
  Type _type;    // 1.类型
  GeneralizedNode* _next; //2.指向同层的下一个节点
  union
  {
    char _value;  // 3.有效值
    GeneralizedNode* _subLink;   // 3.指向子表的指针
  };

  GeneralizedNode(Type type = HEAD, char value = '0')
  :_value(value)
  ,_type(type)
  , _next(NULL)
  {
    if (_type == SUB)
    {
      _subLink = NULL;
    }
  }
};

广义表的定义及基本操作: 

class Generalized
{
public:
  //无参的构造函数,建立空的广义表
  Generalized();
  //建造广义表,有参数的构造函数
  Generalized(const char* str);
  //打印广义表
  void Print();
  //获取值节点的个数
  size_t Amount();
  //获取广义表的深度
  size_t Depth();
  //拷贝构造
  Generalized(const Generalized& g);
  ////赋值运算符的重载
  Generalized& operator=(const Generalized& g);
  ////析构函数
  ~Generalized();

protected:
  void _Print(GeneralizedNode* head);
  GeneralizedNode* _CreatList(const char*& str);
  size_t _Amount(GeneralizedNode* head);
  GeneralizedNode* _Copy(GeneralizedNode* head);
  void _Destory(GeneralizedNode* head);
protected:
  GeneralizedNode* _head;  //记录广义表头指针
};

初始化建立广义表进行循环递归。遍历字符串时遇到字符就建立值节点,遇到'('就进行递归并建立子表;遇到')'就结束当前子表的建立,并返回当前子表的头指针。 

GeneralizedNode* _CreatList(const char*& str)
{
  assert(*str == '(');
  GeneralizedNode* head = new GeneralizedNode(HEAD,'0');
  GeneralizedNode* cur = head;
  str++;
  while (str != '\0')
  {
    if ((*str >= '0'&&*str <= '9') || (*str >= 'a'&&*str <= 'z') || (*str >= 'A'&&*str <= 'Z'))
    {
      cur->_next = new GeneralizedNode(VALUE, *str);
      cur = cur->_next;
    }
    else if (*str == '(')
    {
      cur->_next = new GeneralizedNode(SUB);
      cur = cur->_next;
      cur->_subLink = _CreatList(str);
    }
    else if (*str == ')')
    {
      return head;
    }
    str++;
  }
  return head;
}

打印广义表:当节点的类型为SUB时进行递归,最后不要忘了每打印完一层要打印一个后括号。

void _Print(GeneralizedNode* head)
{
  if (head == NULL)
  {
    cout << "Generalized table is NULL" << endl;
    return;
  }
  GeneralizedNode* cur = head;
  while (cur)
  {
    if (cur->_type == HEAD)
    {
      cout << '(';
    }
    else if (cur->_type == VALUE)
    {
      cout << cur->_value;
      if (cur->_next)
      {
        cout << ',';
      }
    }
    else if (cur->_type == SUB)
    {
      _Print(cur->_subLink);
      if (cur->_next)
      {
        cout << ',';
      }
    }
    cur = cur->_next;
  }
  cout << ')';
}

获取值节点的个数:设置count变量,遇到值节点就加1,遇到SUB节点进行递归并将返回值加给count

size_t _Amount(GeneralizedNode* head)
{
  GeneralizedNode* begin = head;
  size_t count = 0;
  while (begin)
  {
    if (begin->_type == VALUE)
    {
      count++;
    }
    if (begin->_type == SUB)
    {
      count += _Amount(begin->_subLink);
    }
    begin = begin->_next;
  }
  return count;
}

广义表的深度:设置变量dp和max分别用来记录当前子表即当前SUB节点指向的子表深度,以及本层所有的SUB节点中深度最大的子表的深度。

size_t _Depth(GeneralizedNode* head)
{
  if (_head == NULL)
  {
    return 0;
  }
  size_t dp=0;
  GeneralizedNode* cur = head;
  size_t max = 0;
  while (cur)
  {
    if (cur->_type == SUB)
    {
      dp=_Depth(cur->_subLink);
      if (max < dp)
      {
        max = dp;
      }
    }
    cur = cur->_next;
  }
  return max+1;
}

销毁广义表:依次遍历节点,遇到子表递归,将子表的节点delete完成后,再回到当前层继续遍历。

void _Destory(GeneralizedNode* head)
{
  if (head == NULL)
  {
    return;
  }
  while (head)
  {
    GeneralizedNode* begin = head->_next;
    if (head->_type == SUB)
    {
      _Destory(head->_subLink);
    }
    delete head;
    head = begin;
  }
}

实例演示

定义:

广义表是n(n≥0)个元素a1,a2,…,ai,…,an的有限序列。

  其中:

  ①ai--或者是原子或者是一个广义表。

  ②广义表通常记作:

  Ls=( a1,a2,…,ai,…,an)。

  ③Ls是广义表的名字,n为它的长度。

  ④若ai是广义表,则称它为Ls的子表。

  注意:

  ①广义表通常用圆括号括起来,用逗号分隔其中的元素。

  ②为了区分原子和广义表,书写时用大写字母表示广义表,用小写字母表示原子。

  ③若广义表Ls非空(n≥1),则al是LS的表头,其余元素组成的表(a1,a2,…,an)称为Ls的表尾。

  ④广义表是递归定义的

画图举例:

代码实现:

[cpp] view plain copy
#include <iostream> 

using namespace std; 

//表示广义表的结点类型
enum NodeType
{
  HEAD_TYPE,//头结点类型
  VALUE_TYPE,//值结点类型
  SUB_TYPE//子表类型
}; 

//表示广义表结点的结构体
struct GeneraListNode
{
  NodeType _type;//结点类型
  GeneraListNode *_next;//存放结点的下一个元素的地址 

  //一个结点要么是值结点要么是子表,故用联合体来存放节省一定的空间
  //若是值结点则存放的是值,是子表结点的话存放的是子表结点头结点的地址
  union{
    char _value;
    GeneraListNode *_subLink;
  }; 

  GeneraListNode(NodeType type = HEAD_TYPE, char value = '\0')
    :_type(type)
    ,_next(NULL)
  {
    if (type == VALUE_TYPE)
    {
      _value = value;
    }else if(type == SUB_TYPE)
    {
      _subLink = NULL;
    } 

  } 

}; 

class GeneraList
{
private:
  GeneraListNode *_link;//用来存放广义表头结点地址
public:
  GeneraList(const char *str)
    :_link(NULL)
  {
    _CreateGeneraList(_link, str);//根据指定序列创建广义表
  } 

  ~GeneraList()
  {}
public:
  void Print();//对外提供的打印广义表的接口
  int Size();//广义表中值结点的数目的对外获取接口
  int Depth();//广义表的最深层次的对外获取接口
private:
  void _CreateGeneraList(GeneraListNode *& link, const char *& str);
  bool _IsValue(const char ch);//判断指定字符是否为值结点所允许的类型
  int _Size(GeneraListNode *head);//计算广义表中值结点的数目的实现
  int _Depth(GeneraListNode *head);//计算广义表的最深层次的实现
  void _Print(GeneraListNode *link);//打印广义表的接口的底层实现
}; 

//创建广义表
void GeneraList::_CreateGeneraList(GeneraListNode *& link, const char *& str)
{
  //广义表最前端有一个头结点,用来记录实现广义表链表的首地址
  //故每次调用该创建广义表的函数首先创建一个头结点
  GeneraListNode* head = new GeneraListNode(HEAD_TYPE, NULL);
  head->_next = NULL;
  link = head;
  GeneraListNode* cur = link;//用来记录创建广义表链表时当前创建出的结点位置游标指针
  str++;//将广义表序列后移,相当于跳过了'(' 

  while(*str != '\0')
  {
    if(_IsValue(*str)){//如果当前扫描到的字符是值
      //创建一个值结点
      GeneraListNode* newNode = new GeneraListNode(VALUE_TYPE, *str);
      newNode->_next = NULL;
      cur->_next = newNode;//将该值结点加入到链表中
      cur = cur->_next;//游标后移
      str++;//将广义表序列后移
    }else if(*str == '('){//如果扫描到'('创建子表结点
      GeneraListNode* subLink = new GeneraListNode(SUB_TYPE, NULL);
      subLink->_next = NULL;
      cur->_next = subLink;//将子表结点加入到链表中
      cur = cur->_next;
      _CreateGeneraList(cur->_subLink, str);//递归创建子表
    }else if(*str == ')'){
      str++;
      return;//若扫描到')'表示广义表创建结束
    }else{
      str++;//空格等其他无效字符跳过
    }
  }
} 

int GeneraList::Size()
{
  return _Size(_link);
} 

//计算广义表值结点的个数
int GeneraList::_Size(GeneraListNode *head)
{
  int size = 0;
  GeneraListNode *cur = head;
  while(cur != NULL){
    if(cur->_type == VALUE_TYPE){
      ++size;//遇到值结点则将size加一
    }else if(cur->_type == SUB_TYPE){
      size += _Size(cur->_subLink);//遇到子表进行递归
    }
    cur = cur->_next;
  }
  return size;
} 

int GeneraList::Depth()
{
  return _Depth(_link);
}
int GeneraList::_Depth(GeneraListNode *head)
{
  int depth = 1,maxDepth = 1;//depth表示当前表的深度,maxDepth表示目前最大的深度
  GeneraListNode *cur = head;
  while(cur != NULL){
    if(cur->_type == SUB_TYPE){
      depth += _Depth(cur->_subLink);
    }
    if(depth > maxDepth){//更新最大深度
      maxDepth = depth;
      depth = 1;//将当前深度复位
    }
    cur = cur->_next;
  }
  return maxDepth;
} 

void GeneraList::Print()
{
  _Print(_link);
  cout<<endl;
} 

//打印广义表
void GeneraList::_Print(GeneraListNode *link)
{
  GeneraListNode *cur = link;//遍历广义表的游标
  while(cur != NULL){
    if(cur->_type == VALUE_TYPE){
      cout<<cur->_value;
      if(cur->_next != NULL)
      {
        cout<<',';
      }
    }else if(cur->_type == HEAD_TYPE){
      cout<<"(";
    }else if(cur->_type == SUB_TYPE){
      _Print(cur->_subLink);//遇到子表递归打印
      if(cur->_next != NULL)//如果打印完子表后广义表未结束则打印','
      {
        cout<<",";
      }
    }
    cur = cur->_next;
  }
  cout<<")";
} 

bool GeneraList::_IsValue(const char ch)
{
  if(ch >= 'a' && ch <= 'z' ||
    ch >= 'A' && ch <= 'Z' ||
    ch >= '0' && ch <= '(')
  {
    return true;
  }
  return false;
} 

测试代码

[cpp] view plain copy
#include"GeneraList.hpp" 

//测试空表
void Test1()
{
  GeneraList genList("()");
  genList.Print();
  cout<<"Size is :"<<genList.Size()<<endl;
  cout<<"Depth is :"<<genList.Depth()<<endl<<endl;
}
//测试单层表
void Test2()
{
  GeneraList genList("(a,b)");
  genList.Print();
  cout<<"Size is :"<<genList.Size()<<endl;
  cout<<"Depth is :"<<genList.Depth()<<endl<<endl;
}
//测试双层表
void Test3()
{
  GeneraList genList("(a,b,(c,d))");
  genList.Print();
  cout<<"Size is :"<<genList.Size()<<endl;
  cout<<"Depth is :"<<genList.Depth()<<endl<<endl;
}
//测试多层表
void Test4()
{
  GeneraList genList("(a,b,(c,d),(e,(f),h))");
  genList.Print();
  cout<<"Size is :"<<genList.Size()<<endl;
  cout<<"Depth is :"<<genList.Depth()<<endl<<endl;
}
//测试多层空表
void Test5()
{
  GeneraList genList("(((),()),())");
  genList.Print();
  cout<<"Size is :"<<genList.Size()<<endl;
  cout<<"Depth is :"<<genList.Depth()<<endl<<endl;
} 

int main()
{
  Test1();
  Test2();
  Test3();
  Test4();
  Test5();
  return 0;
} 

运行结果

总结

以上就是关于C++如何实现广义表详解的全部内容,希望对有需要的人能有所帮助,如果有疑问欢迎大家留言讨论。

(0)

相关推荐

  • 用C语言实现单链表的各种操作(一)

    最近,从新复习了一下数据结构中比较重要的几个部分,现在把自己的成果记录下来,主要就是仿照严蔚敏的<数据结构>(C 语言版),中的例子和后面的习题进行改编的.首先,是单链表的各种实现,其中,包含了一些常考的知识点.例如,单链表的逆置,单链表的合并,找到单链表的中间节点等的算法实现.下面这个是单链表的结构体的定义: 复制代码 代码如下: typedef struct LNode{ ElemType data; struct LNode *next;}LinkList; 下面的基本的单链表的操作:其

  • C语言单循环链表的表示与实现实例详解

    1.概述: 对于一个循环链表来说,其首节点和末节点被连接在一起.这种方式在单向和双向链表中皆可实现.要转换一个循环链表,可以选择开始于任意一个节点然后沿着列表的任一方向直到返回开始的节点.再来看另一种方法,循环链表可以被视为"无头无尾".这种列表很利于节约数据存储缓存, 假定你在一个列表中有一个对象并且希望所有其他对象迭代在一个非特殊的排列下. 指向整个列表的指针可以被称作访问指针. 用单向链表构建的循环链表 循环链表中第一个节点之前就是最后一个节点,反之亦然.循环链表的无边界使得在这

  • C语言运算符优先级列表(超详细)

    每当想找哪个运算符优先级高时,很多时候总是想找的就没有,真让人气愤!现在,终于有个我个人觉得非常全的,分享给大家,欢迎拍砖! C语言运算符优先级 优先级 运算符 名称或含义 使用形式 结合方向 说明 1 [] 数组下标 数组名[常量表达式] 左到右 -- () 圆括号 (表达式)/函数名(形参表) -- . 成员选择(对象) 对象.成员名 -- -> 成员选择(指针) 对象指针->成员名 -- 2 - 负号运算符 -表达式 右到左 单目运算符 ~ 按位取反运算符 ~表达式 ++ 自增运算符 +

  • c语言链表基本操作(带有创建链表 删除 打印 插入)

    复制代码 代码如下: #include <stdio.h>#include <stdlib.h>#include <malloc.h>#define LEN sizeof(struct Student)struct Student{    long num;    float score;    struct Student*next;};int n;int main(){    /*-----------------------------程序描述----------

  • C语言双向链表的表示与实现实例详解

    1.概述: C语言中一种更复杂的链表是"双向链表"或"双面链表".其表中的每个节点有两个连接:一个指向前一个节点,(当这个"连接"为第一个"连接"时,指向空值或者空列表):而另一个指向下一个节点,(当这个"连接"为最后一个"连接"时,指向空值或者空列表) 一个双向链表有三个整数值: 数值, 向后的节点链接, 向前的节点链接 在一些低级语言中, XOR-linking 提供一种在双向链表中

  • C语言单向链表的表示与实现实例详解

    1.概述: C语言中的单向链表(单链表)是链表的一种,其特点是链表的链接方向是单向的,对链表的访问要通过顺序读取从头部开始. 链表中最简单的一种是单向链表,它包含两个域,一个信息域和一个指针域.这个链接指向列表中的下一个节点,而最后一个节点则指向一个空值. 如下图所示: 一个单向链表包含两个值: 当前节点的值和一个指向下一个节点的链接 一个单向链表的节点被分成两个部分.第一个部分保存或者显示关于节点的信息,第二个部分存储下一个节点的地址.单向链表只可向一个方向遍历. 链表最基本的结构是在每个节点

  • 哈希表实验C语言版实现

    复制代码 代码如下: /* 数据结构C语言版 哈希表 */#include <stdio.h>#include <malloc.h>#define NULLKEY 0 // 0为无记录标志 #define N 10  // 数据元素个数 typedef int KeyType;// 设关键字域为整型 typedef struct{ KeyType key; int ord;}ElemType; // 数据元素类型 // 开放定址哈希表的存储结构 int hashsize[]={11

  • C语言实现带头结点的链表的创建、查找、插入、删除操作

    本文实例讲述了C语言实现带头结点的链表的创建.查找.插入.删除操作.是数据结构中链表部分的基础操作.分享给大家供大家参考.具体方法如下: #include <stdio.h> #include <stdlib.h> typedef struct node { int data; struct node* next;// 这个地方注意结构体变量的定义规则 } Node, *PNode; Node* createLinklist(int length) { int i = 0; PNo

  • C++如何实现广义表详解

    以下给出几种简单的广义表模型: 由上图我们可以看到,广义表的节点类型无非head.value.sub三种,这里设置枚举类型,利用枚举变量来记录每个节点的类型: enum Type { HEAD, //头节点 VALUE, //值节点 SUB, //子表节点 }; 每个节点都有自己的类型以及next指针,除此之外,如果该节点是VALUE类型还要分配空间存储该节点的有效值:但是若该节点是SUB类型,就需定义一个指针指向子表的头. 这里我们可以用联合来解决这个问题. (联合(或共同体)是一种不同数据类

  • MySQL 复制表详解及实例代码

    MySQL 复制表详解 如果我们需要完全的复制MySQL的数据表,包括表的结构,索引,默认值等. 如果仅仅使用CREATE TABLE ... SELECT 命令,是无法实现的. 本章节将为大家介绍如何完整的复制MySQL数据表,步骤如下: 使用 SHOW CREATE TABLE 命令获取创建数据表(CREATE TABLE) 语句,该语句包含了原数据表的结构,索引等. 复制以下命令显示的SQL语句,修改数据表名,并执行SQL语句,通过以上命令 将完全的复制数据表结构. 如果你想复制表的内容,

  • C++语言实现hash表详解及实例代码

    C++语言实现hash表详解 概要: hash表,有时候也被称为散列表.个人认为,hash表是介于链表和二叉树之间的一种中间结构.链表使用十分方便,但是数据查找十分麻烦:二叉树中的数据严格有序,但是这是以多一个指针作为代价的结果.hash表既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便. 打个比方来说,所有的数据就好像许许多多的书本.如果这些书本是一本一本堆起来的,就好像链表或者线性表一样,整个数据会显得非常的无序和凌乱,在你找到自己需要的书之前,你要经历许多的查询过程:而如果

  • Mysql中mysql.user用户表详解

    MySQL是一个多用户管理的数据库,可以为不同用户分配不同的权限,分为root用户和普通用户,root用户为超级管理员,拥有所有权限,而普通用户拥有指定的权限. MySQL是通过权限表来控制用户对数据库访问的,权限表存放在mysql数据库中,主要的权限表有以下几个: user,db,host,table_priv,columns_priv和procs_priv,先带你了解的是user表. 用户列(用户连接MySQL数据库需要输入的信息) Host:主机名,双主键之一,值为%时表示匹配所有主机.U

  • Mybatis-plus使用TableNameHandler分表详解(附完整示例源码)

    为什么要分表 Mysql是当前互联网系统中使用非常广泛的关系数据库,具有ACID的特性. 但是mysql的单表性能会受到表中数据量的限制,主要原因是B+树索引过大导致查询时索引无法全部加载到内存.读取磁盘的次数变多,而磁盘的每次读取对性能都有很大的影响. 这时一个简单可行的方案就是分表(当然土豪也可以堆硬件),将一张数据量庞大的表的数据,拆分到多个表中,这同时也减少了B+树索引的大小,减少磁盘读取次数,提高性能. 两种基础分表逻辑 说完了为什么要分表,下面聊聊业务开发中常见的两种基础的分表逻辑.

  • C/C++ Qt数据库SqlRelationalTable关联表详解

    在上一篇博文中详细介绍了SqlTableModle组件是如何使用的,本篇博文将介绍SqlRelationalTable关联表组件,该组件其实是SqlTableModle组件的扩展类,SqlRelationalTable组件可以关联某个主表中的外键,例如将主表中的某个字段与附加表中的特定字段相关联起来,QSqlRelation(关联表名,关联ID,名称)就是用来实现多表之间快速关联的. 首先我们创建两张表,一张Student表存储学生名字以及学生课程号,另一张Departments存储每个编号所对

  • Python数据结构与算法之跳表详解

    目录 0. 学习目标 1. 跳表的基本概念 1.1 跳表介绍 1.2 跳表的性能 1.3 跳表与普通链表的异同 2. 跳表的实现 2.1 跳表结点类 2.2 跳表的初始化 2.3 获取跳表长度 2.4 读取指定位置元素 2.5 查找指定元素 2.6 在跳表中插入新元素 2.7 删除跳表中指定元素 2.8 其它一些有用的操作 3. 跳表应用 3.1 跳表应用示例 0. 学习目标 在诸如单链表.双线链表等普通链表中,查找.插入和删除操作由于必须从头结点遍历链表才能找到相关链表,因此时间复杂度均为O(

  • C语言数据结构哈希表详解

    /* * 程序名:hash.c,此程序演示哈希表的实现,数据元素单链表带头结点. * */ #include <stdio.h> #include <stdlib.h> #include <string.h> // 哈希表中数据元素的结构体. typedef struct Element { unsigned int key; // 关键字. int value; // 数据元素其它数据项,可以是任意数据类型. // char value[1001]; // 数据元素其

  • C++数据结构哈希表详解

    目录 实现 散列函数 开散列方法 闭散列方法(开地址方法) 删除* 实现 哈希表,即散列表,可以快速地存储和查询记录.理想哈希表的存储和查询时间都是 O(1). 本<资料>中哈希表分以下几部分:散列函数.存储和查找时的元素定位.存储.查找.删除操作因为不常用,所以只给出思想,不给出代码. 根据实际情况,可选择不同的散列方法. 以下代码假设哈希表不会溢出. // N表示哈希表长度,是一个素数,M表示额外空间的大小,empty代表"没有元素". const int N=9997

  • PostgreSQL教程(十五):系统表详解

    一.pg_class: 该系统表记录了数据表.索引(仍然需要参阅pg_index).序列.视图.复合类型和一些特殊关系类型的元数据.注意:不是所有字段对所有对象类型都有意义. 名字 类型 引用 描述 relname name   数据类型名字. relnamespace oid pg_namespace.oid 包含这个对象的名字空间(模式)的OI. reltype oid pg_type.oid 对应这个表的行类型的数据类型. relowner oid pg_authid.oid 对象的所有者

随机推荐