使用pandas对矢量化数据进行替换处理的方法
使用pandas处理向量化的数据,进行数据的替换时不仅仅能够进行字符串的替换也能够处理数字。
做简单的示例如下:
In [4]: data = Series(range(5))
In [5]: data Out[5]: 0 0 1 1 2 2 3 3 4 4 dtype: int64
In [6]: data.replace(3,333) Out[6]: 0 0 1 1 2 2 3 333 4 4 dtype: int64
In [7]: data Out[7]: 0 0 1 1 2 2 3 3 4 4 dtype: int64
In [8]: data.replace({2:np.nan,4:444}) Out[8]: 0 0.0 1 1.0 2 NaN 3 3.0 4 444.0 dtype: float64
从上面可以看出,替换可以进行单个数字的替换,也可以穿入一个字典进行一个序列的替换。
简单的替换虽然也可以通过赋值进行修改,但是通过赋值进行修改的时候一般首先得进行数据替换对象的查找。但是,通过Series对象的replace方法进行数据替换的方便之处则在于省掉了数据对象的查询。
这篇使用pandas对矢量化数据进行替换处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
在Python中利用Pandas库处理大数据的简单介绍
在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境 CPU:3.5 GHz Intel Core i7 内存:32 GB HDDR 3 1600 MHz 硬
-
python解决pandas处理缺失值为空字符串的问题
踩坑记录: 用pandas来做csv的缺失值处理时候发现奇怪BUG,就是excel打开csv文件,明明有的格子没有任何东西,当然,我就想到用pandas的dropna()或者fillna()来处理缺失值. 但是pandas读取csv文件后发现那个空的地方isnull()竟然是false,就是说那个地方有东西... 后来经过排查发现看似什么都没有的地方有空字符串,故pandas认为那儿不是缺失值,所以就不能用dropna()或者fillna()来处理. 解决思路:先用正则将空格匹配出来,然后全部替
-
使用pandas批量处理矢量化字符串的实例讲解
进行已经矢量化后的字符串数据,可以使用pandas的Series数据对象的map方法.这样,对于未经矢量化的数据也可以先进行数据的矢量化转换然后再进行相应的处理. 举例实现字符串数据的操作,编写代码如下: #!/usr/bin/python import numpy as np import pandas as pd from pandas import Series,DataFrame seriers_data = Series(['Hello','Python','Data','World'
-
使用pandas对矢量化数据进行替换处理的方法
使用pandas处理向量化的数据,进行数据的替换时不仅仅能够进行字符串的替换也能够处理数字. 做简单的示例如下: In [4]: data = Series(range(5)) In [5]: data Out[5]: 0 0 1 1 2 2 3 3 4 4 dtype: int64 In [6]: data.replace(3,333) Out[6]: 0 0 1 1 2 2 3 333 4 4 dtype: int64 In [7]: data Out[7]: 0 0 1 1 2 2 3 3
-
pandas读取csv格式数据时header参数设置方法
目录 写在前面 参考文档 read_csv的header参数 header参数测试 思考 写在前面 使用pandas中read_csv读取csv数据时,对于有表头的数据,将header设置为空(None),会报错:pandas_libs\parsers.pyx in pandas._libs.parsers.raise_parser_error() ParserError: Error tokenizing data. C error: Expected 4 fields in line 2,
-
Pandas DataFrame 取一行数据会得到Series的方法
Pandas DataFrame 取一行数据会得到Series的方法 如题,想要取如下dataframe的一行数据,以为得到的还是dataframe lista = [1, 3, 7,4,0] listb = [3, 3, 4,4,5] listc = [3, 3, 4,4,6] df1 = pd.DataFrame({'col1':lista,'col2':listb,'colb':listc}) print(df1) print(df1.loc[0,:]) print(type(df1.lo
-
利用Pandas读取表格行数据判断是否相同的方法
描述: 下午快下班的时候公司供应链部门的同事跑过来问我能不能以程序的方法帮他解决一些excel表格每周都需要手工重复做的事情,Excel 是数据处理最常用的办公工具对于市场.运营都应该很熟练.哈哈,然而程序员是不怎么会用excel的.下面给大家介绍一下pandas, Pandas是一个强大的分析结构化数据的工具集:它的使用基础是Numpy(提供高性能的矩阵运算):用于数据挖掘和数据分析,同时也提供数据清洗功能. 具体需求: 找出相同的数字,把与数字对应的英文字母合并在一起. 期望最终生成值:
-
python pandas中DataFrame类型数据操作函数的方法
python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几
-
Python 中pandas索引切片读取数据缺失数据处理问题
引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等 比如:我们通过爬虫获取到了存储在数据库中的数据 比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等 所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我
-
Pandas实现一列数据分隔为两列
分割成一个包含两个元素列表的列 对于一个已知分隔符的简单分割(例如,用破折号分割或用空格分割).str.split() 方法就足够了 . 它在字符串的列(系列)上运行,并返回列表(系列). >>> import pandas as pd >>> df = pd.DataFrame({'AB': ['A1-B1', 'A2-B2']}) >>> df AB 0 A1-B1 1 A2-B2 >>> df['AB_split'] = df[
-
python pandas处理excel表格数据的常用方法总结
目录 前言 1.读取xlsx表格:pd.read_excel() 2.获取表格的数据大小:shape 3.索引数据的方法:[ ] / loc[] / iloc[] 4.判断数据为空:np.isnan() / pd.isnull() 5.查找符合条件的数据 6.修改元素值:replace() 7.增加数据:[ ] 8.删除数据:del() / drop() 9.保存到excel文件:to_excel() 总结 前言 最近助教改作业导出的成绩表格跟老师给的名单顺序不一致,脑壳一亮就用pandas写了
-
基于pandas数据样本行列选取的方法
注:以下代码是基于python3.5.0编写的 import pandas food_info = pandas.read_csv("food_info.csv") # ------------------选取数据样本的第一行-------------------- print(food_info.loc[0]) #------------------选取数据样本的3到6行---------------------- print(food_info.loc[3:6]) #-------
随机推荐
- iOS开发之UIScrollView详解
- python异步任务队列示例
- 关于document.cookie的使用javascript
- JavaScript 全角转半角部分
- 微信小程序(十九)radio组件详细介绍
- Python使用multiprocessing创建进程的方法
- C#特性之匿名方法和Lambda表达式
- CSS滤镜参考
- Ajax——异步检查用户名是否存在示例
- Java web开发中加载图片路径的两种方式
- C# 利用IRawPixels接口遍历栅格数据
- jQuery的图片轮播插件PgwSlideshow使用详解
- jQuery实现优雅的弹窗效果(6)
- php ajax实现文件上传进度条
- 详解Win10 Bash/WSL调试Linux环境下的.NET Core应用程序
- 电脑操作误区面面观
- iOS利用NSAttributedString实现图文混排效果示例
- php可变长参数处理函数详解
- 解析:android 如何从JPEG生成BufferedImage
- PHP异步进程助手async-helper