详解用python生成随机数的几种方法

今天学习了用python生成仿真数据的一些基本方法和技巧,写成博客和大家分享一下。

本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码。

1 从给定参数的正态分布中生成随机数

当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:

import numpy as np

# 定义从正态分布中获取随机数的函数
def get_normal_random_number(loc, scale):
 """
 :param loc: 正态分布的均值
 :param scale: 正态分布的标准差
 :return:从正态分布中产生的随机数
 """
 # 正态分布中的随机数生成
 number = np.random.normal(loc=loc, scale=scale)
 # 返回值
 return number

# 主模块
if __name__ == "__main__":
 # 函数调用
 n = get_normal_random_number(loc=2, scale=2)
 # 打印结果
 print(n)
 # 结果:3.275192443463058

2 从给定参数的均匀分布中获取随机数的函数

考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。

import numpy as np
# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
 """
 :param low: 均匀分布的下界
 :param high: 均匀分布的上界
 :return: 从均匀分布中产生的随机数
 """
 # 均匀分布的随机数生成
 number = np.random.uniform(low, high)
 # 返回值
 return number

# 主模块
if __name__ == "__main__":
 # 函数调用
 n = get_uniform_random_number(low=2, high=4)
 # 打印结果
 print(n)
 # 结果:2.4462417140153114

3 按照指定概率生成随机数

有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。

3.1 按照指定概率从数字列表中随机抽取数字

假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:

import numpy as np
import random

# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
 """
 :param low: 均匀分布的下界
 :param high: 均匀分布的上界
 :return: 从均匀分布中产生的随机数
 """
 # 均匀分布的随机数生成
 number = np.random.uniform(low, high)
 # 返回值
 return number

# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数
def get_number_by_pro(number_list, pro_list):
 """
 :param number_list:数字列表
 :param pro_list:数字对应的概率列表
 :return:按概率从数字列表中抽取的数字
 """
 # 用均匀分布中的样本值来模拟概率
 x = random.uniform(0, 1)
 # 累积概率
 cum_pro = 0.0
 # 将可迭代对象打包成元组列表
 for number, number_pro in zip(number_list, pro_list):
 cum_pro += number_pro
 if x < cum_pro:
  # 返回值
  return number

# 主模块
if __name__ == "__main__":
 # 数字列表
 num_list = [1, 2, 3, 4, 5]
 # 对应的概率列表
 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1]
 # 函数调用
 n = get_number_by_pro(number_list=num_list, pro_list=pr_list)
 # 打印结果
 print(n)
 # 结果:1

3.2 按照指定概率从区间列表中的某个区间内生成随机数

给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:

import numpy as np
import random

# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
 """
 :param low: 均匀分布的下界
 :param high: 均匀分布的上界
 :return: 从均匀分布中产生的随机数
 """
 # 均匀分布的随机数生成
 number = np.random.uniform(low, high)
 # 返回值
 return number

# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数
def get_number_by_pro(number_list, pro_list):
 """
 :param number_list:数字列表
 :param pro_list:数字对应的概率列表
 :return:按概率从数字列表中抽取的数字
 """
 # 用均匀分布中的样本值来模拟概率
 x = random.uniform(0, 1)
 # 累积概率
 cum_pro = 0.0
 # 将可迭代对象打包成元组列表
 for number, number_pro in zip(number_list, pro_list):
 cum_pro += number_pro
 if x < cum_pro:
  # 从区间[number. number - 1]上随机抽取一个值
  num = get_uniform_random_number(number, number - 1)
  # 返回值
  return num

# 主模块
if __name__ == "__main__":
 # 数字列表
 num_list = [1, 2, 3, 4, 5]
 # 对应的概率列表
 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1]
 # 函数调用
 n = get_number_by_pro(number_list=num_list, pro_list=pr_list)
 # 打印结果
 print(n)
 # 结果:3.49683787011193

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python生成不重复随机数和对list乱序的解决方法

    andom.sample(list, n)即是从list中随机选取n个不同的元素 # -*- coding: utf-8 -*- import random # 从一个list中随机挑选5个 list = [12, 23, 13, 14, 78, 234, 123, 12345] randomlist = random.sample(list, 5) print randomlist # 在range(10)中随机生成5个不重复的数,可以作为随机下标集合,然后到list中取数 len = lis

  • python3生成随机数实例

    本文实例讲述了python3生成随机数的方法.分享给大家供大家参考.具体实现方法如下: 该实例是根据一本书上看到过一个随机数的小程序,经过自己改动,变为了一个猜数字的小游戏,现在在python3下重写了一遍. 这是一个控制台下的猜数程序,winxp+python3.2+eric5和IDLE测试通过,但直接用winxp的命令行运行有问题,原因还未知,慢慢找.ubuntu+python3.1测试通过. 具体实现代码如下: 复制代码 代码如下: # -*- coding: utf-8 -*- impo

  • python 随机数生成的代码的详细分析

    以下的文章主要是以介绍python随机数生成的代码来介绍Python随机数生成在实际操作过程中的具体应用,如果你对其的相关内容感兴趣的话,你就可以点击以下的文章.希望你会对它有所收获. Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. 复制代码 代码如下: random.randomrandom.random() 用于生成一个0到1的随机符点数: 复制代码 代码如下: 0 <= n < 1.0random.uniformrandom.unifor

  • Python生成随机数的方法

    如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,以下就是这篇文章的介绍. random.random()用于生成 用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成随机数 n: a <= n <= b.如果 a <b, 则 b <= n <= a. print random.uniform(

  • Python random模块(获取随机数)常用方法和使用例子

    random.randomrandom.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniformrandom.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <b, 则 b <= n <= a 复制代码 代码如下: print random.uniform(10, 20)print rand

  • Python中random模块生成随机数详解

    Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniform random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <

  • Python标准库之随机数 (math包、random包)介绍

    我们已经在Python运算中看到Python最基本的数学运算功能.此外,math包补充了更多的函数.当然,如果想要更加高级的数学功能,可以考虑选择标准库之外的numpy和scipy项目,它们不但支持数组和矩阵运算,还有丰富的数学和物理方程可供使用. 此外,random包可以用来生成随机数.随机数不仅可以用于数学用途,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性. math包 math包主要处理数学相关的运算.math包定义了两个常数: 复制代码 代码如下: math.e   # 自

  • Python生成随机数组的方法小结

    本文实例讲述了Python生成随机数组的方法.分享给大家供大家参考,具体如下: 研究排序问题的时候常常需要生成随机数组来验证自己排序算法的正确性和性能,今天把Python生成随机数组的方法稍作总结,以备以后查看使用. 一.使用random模块生成随机数组 python的random模块中有一些生成随机数字的方法,例如random.randint, random.random, random.uniform, random.randrange,这些函数大同小异,均是在返回指定范围内的一个整数或浮点

  • Python实现生成随机数据插入mysql数据库的方法

    本文实例讲述了Python实现生成随机数据插入mysql数据库的方法.分享给大家供大家参考,具体如下: 运行结果: 实现代码: import random as r import pymysql first=('张','王','李','赵','金','艾','单','龚','钱','周','吴','郑','孔','曺','严','华','吕','徐','何') middle=('芳','军','建','明','辉','芬','红','丽','功') last=('明','芳','','民','敏

  • 详解用python生成随机数的几种方法

    今天学习了用python生成仿真数据的一些基本方法和技巧,写成博客和大家分享一下. 本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码. 1 从给定参数的正态分布中生成随机数 当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了.这里调用了Numpy模块中的random.normal函数

  • 详解用Python处理Args的3种方法

    1. sys 模块 Python 中的 sys 模块具有 argv 功能.当通过终端触发 main.py 的执行时,此功能将返回提供给 main.py 的所有命令行参数的列表.除了其他参数之外,返回列表中的第一个元素是 main.py 的路径. 考虑下面的 main.py 示例 import sys list_of_arguments = sys.argv print(list_of_args[0]) print(list_of_args[1]) print(list_of_args[2]) p

  • 详解使用Python下载文件的几种方法

    在使用Python进行数据抓取的时候,有时候需要保持文件或图片等,在Python中可以有多种方式实现.今天就一起来学习下. urllib.request 主要使用的是urlretrieve方法,该方法处理待淘汰的方法,不建议使用. import urllib.request url = 'https://www.baidu.com/img/superlogo_c4d7df0a003d3db9b65e9ef0fe6da1ec.png' urllib.request.urlretrieve(url,

  • 详解用python计算阶乘的几种方法

    第一种:利用functools 工具处理 import functools result = (lambda k: functools.reduce(int.__mul__, range(1, k + 1), 1))(5) print(result) 第二种:普通的循环 x = 1 y = int(input("请输入要计算的数:")) for i in range(1, y + 1): x = x * i print(x) 第三种:利用递归的方式 def func(n): if n

  • 详解查看Python解释器路径的两种方式

    进入python的安装目录, 查看python解释器 进入bin目录 # ls python(看一下是否有python解释器版本) # pwd (查看当前目录) 复制当前目录即可 1. 通过脚本查看 运行以下脚本,或者进入交互模式手动输入即可. import sys import os print('当前 Python 解释器路径:') print(sys.executable) r""" 当前 Python 解释器路径: C:\Users\jpch89\AppData\Lo

  • 详解Git建立本地仓库的两种方法

    Git是一种分布式版本控制系统,通常这类系统都可以与若干远端代码进行交互.Git项目具有三个主要部分:工作区,暂存目录,暂存区,本地目录: 安装完Git后,要做的第一件事,就是设置用户名和邮件地址.每个Git提交都使用此信息,并且将它永久地烘焙到您开始创建的提交中: $ git config --global user.name "John Doe" $ git config --global user.email johndoe@example.com 之后我们可以建立一个本地仓库.

  • 详解JavaScript中分解数字的三种方法

    本文基于免费代码营基本算法脚本"分解数字" 在数学中,非负整数n的阶乘可能是一个棘手的算法.在本文中,我将解释这种方法,首先使用递归函数,第二种使用而循环,第三种使用以循环. 算法挑战 返回提供的整体的阶乘. 如果整体用字母n表示,则阶乘是所有小于或等于n的正整数的乘积. 阶乘经常用简写符号n!表示! 例如:5!= 1 * 2 * 3 * 4 * 5 = 120 function factorialize(num) { return num; } factorialize(5); 提供

  • 详解在python操作数据库中游标的使用方法

    cursor就是一个Cursor对象,这个cursor是一个实现了迭代器(def__iter__())和生成器(yield)的MySQLdb对象,这个时候cursor中还没有数据,只有等到fetchone()或fetchall()的时候才返回一个元组tuple,才支持len()和index()操作,这也是它是迭代器的原因.但同时为什么说它是生成器呢?因为cursor只能用一次,即每用完一次之后记录其位置,等到下次再取的时候是从游标处再取而不是从头再来,而且fetch完所有的数据之后,这个curs

  • 详解安装Eclipse Maven插件的几种方法

    昨天直接在机器上配置了Maven环境,今天顺便把Eclipse等IDE环境配置好. 安装IDE Plugins的方法有很多.其一:在线安装,通过Help-->Install New Software的方式,输入HTTP地址来安装,简单易操作,但是也优缺点,就是下载速度慢,或者有的时候干脆搜索不到要安装的插件.使用第一种方式来安装,输入 http 地址:http://m2eclipse.sonatype.org/sites/m2e,把选项勾上,然后等待它  下载安装,完成之后重启 eclipse

  • 详解Eclipse安装SVN插件的两种方法

    eclipse里安装SVN插件,一般来说,有两种方式: 直接下载SVN插件,将其解压到eclipse的对应目录里 使用eclipse 里Help菜单的"Install New Software",通过输入SVN地址,直接下载安装到eclipse里 第一种方式: 1.下载SVN插件 SVN插件下载地址及更新地址,你根据需要选择你需要的版本.现在最新是1.8.x Links for 1.8.x Release: Eclipse update site URL: http://subclip

随机推荐