详解解决Python memory error的问题(四种解决方案)

昨天在用用Pycharm读取一个200+M的CSV的过程中,竟然出现了Memory Error!简直让我怀疑自己买了个假电脑,毕竟是8G内存i7处理器,一度怀疑自己装了假的内存条。。。。下面说一下几个解题步骤。。。。一般就是用下面这些方法了,按顺序试试。

一、逐行读取

如果你用pd.read_csv来读文件,会一次性把数据都读到内存里来,导致内存爆掉,那么一个想法就是一行一行地读它,代码如下:

data = []
with open(path, 'r',encoding='gbk',errors='ignore') as f:
  for line in f:
    data.append(line.split(','))

data = pd.DataFrame(data[0:100])

这就是先用with open把csv的每一行读成一个字符串,然后因为csv都是靠逗号分隔符来分割每列的数据的,那么通过逗号分割就可以把这些列都分离开了,然后把每一行的list都放到一个list中,形成二维数组,再转换成DataFrame。

这个方法有一些问题,首先读进来之后索引和列名都需要重新调整,其次很多数字的类型都发生了变化,变成了字符串,最后是最后一列会把换行符包含进去,需要用replace替换掉。

不知道为什么,用了这个操作之后,还是出现了Memory error的问题。基于这些缺点以及遗留问题,考虑第二种解决方案。

二、巧用pandas中read_csv的块读取功能

pandas设计时应该是早就考虑到了这些可能存在的问题,所以在read功能中设计了块读取的功能,也就是不会一次性把所有的数据都放到内存中来,而是分块读到内存中,最后再将块合并到一起,形成一个完整的DataFrame。

f = open(path)

data = pd.read_csv(path, sep=',',engine = 'python',iterator=True)
loop = True
chunkSize = 1000
chunks = []
index=0
while loop:
  try:
    print(index)
    chunk = data.get_chunk(chunkSize)
    chunks.append(chunk)
    index+=1

  except StopIteration:
    loop = False
    print("Iteration is stopped.")
print('开始合并')
data = pd.concat(chunks, ignore_index= True)

以上代码规定用迭代器分块读取,并规定了每一块的大小,即chunkSize,这是指定每个块包含的行数。

这个方法能够保持数据的类型,也不需要自己费心思去调整列名和index,比较方便。但不幸的是,我的还是出现了这个问题,如果你的用了这种方法还是出现memory error,你可以继续往下看。

三、扩充虚拟内存

我在运行代码的过程中发现,出现memory error错误的时候,其实我的内存只用到了40+%,所以其实不太可能会出现这个错误啊,所以我查了下,发现有说是内存被限制了,考虑关掉一些可能限制内存的软件啦,扩大虚拟内存啦,这些的。

扩大虚拟内存的方法(我的系统是win8,不过应该都大同小异):
1、打开 控制面板;
2、找到 系统 这一项;
3、找到 高级系统设置 这一项;
4、点击 性能 模块的 设置 按钮;
5、选择 高级面板,在 虚拟内存 模块点击更改;
6、记得 不要 选中“自动管理所有驱动器的分页文件大小”,然后选择一个驱动器,也就是一个盘,选中自定义大小,手动输入初始大小和最大值,当然,最好不要太大,更改之后能在查看盘的使用情况,不要丢掉太多空间。
7、都设置好之后,记得点击 “设置”, 然后再确定,否则无效,最后 重启电脑 就可以了。

悲剧的是我在设置完这一步之后还是出现了内存错误,到这一步就没有问题了的朋友就可以不用看下面一种解法了,如果还是有问题,可以接下来看。

四、更新Pandas和Numpy库为64位

如果你的Python用的是32位的,那么你的pandas和Numpy也只能是32位的,那么当你的内存使用超过2G时,就会自动终止内存。发现这个错误也是因为我察觉到报内存溢出的错误的时候,我的内存明明显示只用了40+%,然后错误提示是在pandas的core中,所以查了一下,发现原来还有这么个大坑。

解决方法就是:先检查一下你的python是多少位的,在shell中输入python,查看位数,如果是32位,那么就重装Python,装一个64位的,但同时你的库也需要重新装了。不过我执行完这一步之后,问题就完美解决了!

五、如果还有内存溢出的错

以上四种方法,按顺序逐一使用,到哪一步错误消失了就可以停止啦。当然了,如果你的内存显示使用达到了99%+,那么就是内存真的不够用,不是别的问题,如果不是数据量特别大,那就是写代码的时候的习惯问题,虽然Python有垃圾回收机制,但是有时候可能来不及回收,尤其是在循环迭代这些过程中,往往会循环完毕了才来得及收拾垃圾,所以记得及时把不要的变量del掉,或者用gc这个垃圾回收库,这样内存自然就一直清清爽爽啦~

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 解决python报错MemoryError的问题

    如下: python 32bit 最大只能使用 2G 内存,坑爹之处,超过 2G 报错MemoryError. 而 64bit python则无此限制,所以建议使用 64bit python. 可能存在的问题:以前 numpy.scipy 官方的库只支持 32bit python,现在应该发布了 64bit 对应版本. 以上这篇解决python报错MemoryError的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 详解解决Python memory error的问题(四种解决方案)

    昨天在用用Pycharm读取一个200+M的CSV的过程中,竟然出现了Memory Error!简直让我怀疑自己买了个假电脑,毕竟是8G内存i7处理器,一度怀疑自己装了假的内存条....下面说一下几个解题步骤....一般就是用下面这些方法了,按顺序试试. 一.逐行读取 如果你用pd.read_csv来读文件,会一次性把数据都读到内存里来,导致内存爆掉,那么一个想法就是一行一行地读它,代码如下: data = [] with open(path, 'r',encoding='gbk',errors

  • 详解用Python进行时间序列预测的7种方法

    数据准备 数据集(JetRail高铁的乘客数量)下载. 假设要解决一个时序问题:根据过往两年的数据(2012 年 8 月至 2014 年 8月),需要用这些数据预测接下来 7 个月的乘客数量. import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('train.csv') df.head() df.shape 依照上面的代码,我们获得了 2012-2014 年两年每个小时的乘

  • 详解用Python处理HTML转义字符的5种方式

    写爬虫是一个发送请求,提取数据,清洗数据,存储数据的过程.在这个过程中,不同的数据源返回的数据格式各不相同,有 JSON 格式,有 XML 文档,不过大部分还是 HTML 文档,HTML 经常会混杂有转移字符,这些字符我们需要把它转义成真正的字符. 什么是转义字符 在 HTML 中 <.>.& 等字符有特殊含义(<,> 用于标签中,& 用于转义),他们不能在 HTML 代码中直接使用,如果要在网页中显示这些符号,就需要使用 HTML 的转义字符串(Escape Se

  • 详解android进行异步更新UI的四种方式

    大家都知道由于性能要求,Android要求只能在UI线程中更新UI,要想在其他线程中更新UI,我大致总结了4种方式,欢迎补充纠正: 使用Handler消息传递机制: 使用AsyncTask异步任务: 使用runOnUiThread(action)方法: 使用Handler的post(Runnabel r)方法: 下面分别使用四种方式来更新一个TextView. 1.使用Handler消息传递机制 package com.example.runonuithreadtest; import andr

  • 详解react关于事件绑定this的四种方式

    在react组件中,每个方法的上下文都会指向该组件的实例,即自动绑定this为当前组件,而且react还会对这种引用进行缓存,以达到cpu和内存的最大化.在使用了es6 class或者纯函数时,这种自动绑定就不复存在了,我们需要手动实现this的绑定 React事件绑定类似于DOM事件绑定,区别如下: 1.React事件的用驼峰法命名,DOM事件事件命名是小写 2.通过jsx,传递一个函数作为event handler,而不是一个字符串. 3.React事件不能通过返回false来阻止默认事件,

  • 详解Spring加载Properties配置文件的四种方式

    一.通过 context:property-placeholder 标签实现配置文件加载 1.用法示例: 在spring.xml配置文件中添加标签 复制代码 代码如下: <context:property-placeholder ignore-unresolvable="true" location="classpath:redis-key.properties"/> 2.在 spring.xml 中使用配置文件属性: <!-- 基本属性 url.

  • 详解cookie验证的php应用的一种SSO解决办法

    详解cookie验证的php应用的一种SSO解决办法 近日,项目中需要接入一个"年久失修"的PHP应用,由于系统已经建设多年,并且是信息中心自己的人通过某些工具弄出来的,而且是本人未真正接触过的PHP写的,而且跟我们的系统不在同一服务器上也就是存在跨域的问题,想通过客户端模拟登录的方式来实现,但是总是不成功. 没办法,只好想尽一切办法查看页面源代码,然后,找服务器的php文件,分析. 由于对php不熟悉,加上没有仔细看,因此,对于找到的登录页面的php文件,一开始只是有一个初步的了解,

  • 详解基于python的图像Gabor变换及特征提取

    1.前言 在深度学习出来之前,图像识别领域北有"Gabor帮主",南有"SIFT慕容小哥".目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替"Gabor帮主"和"SIFT慕容小哥"的江湖地位.但,在没有大数据和算力支撑的"乡村小镇"地带,或是对付"刁民小辈","Gabor帮主"可以大显身手,具有不可撼动的地位.IT武林中,有基于C++和OpenCV,或

  • 详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

    前言 这周和大家分享如何用python识别图像里的条码.用到的库可以是zbar.希望西瓜6辛苦码的代码不要被盗了.(zxing的话,我一直没有装好,等装好之后再写一篇) 具体步骤 前期准备 用opencv去读取图片,用pip进行安装. pip install opencv-python 所用到的图片就是这个 使用pyzbar windows的安装方法是 pip install pyzbar 而mac的话,最好用brew来安装. (有可能直接就好,也有可能很麻烦) 装好之后就是读取图片,识别条码.

  • 详解使用python爬取抖音app视频(appium可以操控手机)

    记录一下如何用python爬取app数据,本文以爬取抖音视频app为例. 编程工具:pycharm app抓包工具:mitmproxy app自动化工具:appium 运行环境:windows10 思路: 假设已经配置好我们所需要的工具 1.使用mitmproxy对手机app抓包获取我们想要的内容 2.利用appium自动化测试工具,驱动app模拟人的动作(滑动.点击等) 3.将1和2相结合达到自动化爬虫的效果 一.mitmproxy/mitmdump抓包 确保已经安装好了mitmproxy,并

随机推荐