RxJava的消息发送和线程切换实现原理

RxJava是一个在Java虚拟机上的响应式扩展,通过使用可观察的序列将异步和基于事件的程序组合起来的一个库。

它扩展了观察者模式来支持数据/事件序列,并且添加了操作符,这些操作符允许你声明性地组合序列,同时抽象出要关注的问题:比如低级线程、同步、线程安全和并发数据结构等。

RxJava相信大家都非常了解吧,今天分享一下RxJava的消息发送和线程源码的分析。最后并分享一个相关demo,让大家更加熟悉我们天天都在用的框架。

消息订阅发送

首先让我们看看消息订阅发送最基本的代码组成:

 Observable observable = Observable.create(new ObservableOnSubscribe<String>() {
      @Override
      public void subscribe(ObservableEmitter<String> emitter) throws Exception {
        emitter.onNext("Jack1");
        emitter.onNext("Jack2");
        emitter.onNext("Jack3");
        emitter.onComplete();
      }
    });

    Observer<String> observer = new Observer<String>() {
      @Override
      public void onSubscribe(Disposable d) {
        Log.d(TAG, "onSubscribe");
      }

      @Override
      public void onNext(String s) {
        Log.d(TAG, "onNext : " + s);
      }

      @Override
      public void onError(Throwable e) {
        Log.d(TAG, "onError : " + e.toString());
      }

      @Override
      public void onComplete() {
        Log.d(TAG, "onComplete");
      }
    };

    observable.subscribe(observer);

代码很简单,observable为被观察者,observer为观察者,然后通过observable.subscribe(observer),把观察者和被观察者关联起来。被观察者发送消息(emitter.onNext("内容")),观察者就可以在onNext()方法里回调出来。

我们先来看Observable,创建是用Observable.create()方法进行创建,源码如下:

public static <T> Observable<T> create(ObservableOnSubscribe<T> source) {
  ObjectHelper.requireNonNull(source, "source is null");
  return RxJavaPlugins.onAssembly(new ObservableCreate<T>(source));
}

public static <T> T requireNonNull(T object, String message) {
  if (object == null) {
     throw new NullPointerException(message);
  }
  return object;
 }

public static <T> Observable<T> onAssembly(@NonNull Observable<T> source) {
  Function<? super Observable, ? extends Observable> f = onObservableAssembly;
  if (f != null) {
     return apply(f, source);
  }
  return source;
}

可以看出,create()方法里最主要的还是创建用ObservableOnSubscribe传入创建了一个ObservableCreate对象并且保存而已。

public final class ObservableCreate<T> extends Observable<T> {
  final ObservableOnSubscribe<T> source;

  public ObservableCreate(ObservableOnSubscribe<T> source) {
    this.source = source;
  }

}

接着是创建Observer,这比较简单只是单纯创建一个接口对象而已

public interface Observer<T> {
  void onSubscribe(@NonNull Disposable d);

  void onNext(@NonNull T t);

  void onError(@NonNull Throwable e);

  void onComplete();
}

订阅发送消息

observable.subscribe(observer)的subscribe方法如下:

public final void subscribe(Observer<? super T> observer) {
  ObjectHelper.requireNonNull(observer, "observer is null");
  try {
    observer = RxJavaPlugins.onSubscribe(this, observer);
    ObjectHelper.requireNonNull(observer, "Plugin returned null Observer");
    subscribeActual(observer);
  } catch (NullPointerException e) { // NOPMD
    throw e;
  } catch (Throwable e) {
    Exceptions.throwIfFatal(e);
    RxJavaPlugins.onError(e);
    NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS");
    npe.initCause(e);
    throw npe;
  }
}

//ObjectHelper.requireNonNull()方法
public static <T> T requireNonNull(T object, String message) {
  if (object == null) {
     throw new NullPointerException(message);
  }
  return object;
}

//RxJavaPlugins.onSubscribe()方法
public static <T> Observer<? super T> onSubscribe(@NonNull Observable<T> source, @NonNull Observer<? super T> observer) {
  BiFunction<? super Observable, ? super Observer, ? extends Observer> f = onObservableSubscribe;
  if (f != null) {
    return apply(f, source, observer);
  }
  return observer;
}

从上面源码可以看出requireNonNull()只是做非空判断而已,而RxJavaPlugins.onSubscribe()也只是返回最终的观察者而已。所以关键代码是抽象方法subscribeActual(observer);那么subscribeActual对应哪个代码段呢?

还记得Observable.create()创建的ObservableCreate类吗,这就是subscribeActual()具体实现类,源码如下:

protected void subscribeActual(Observer<? super T> observer) {
  CreateEmitter<T> parent = new CreateEmitter<T>(observer);
  observer.onSubscribe(parent);
  try {
    source.subscribe(parent);
  } catch (Throwable ex) {
    Exceptions.throwIfFatal(ex);
    parent.onError(ex);
  }
}

从上面的代码可以看出,首先创建了一个CreateEmitter对象并传入observer,然后回到observer的onSubscribe()方法,而source就是我们之前创建ObservableCreate传入的ObservableOnSubscribe对象。

class CreateEmitter<T> extends AtomicReference<Disposable>
  implements ObservableEmitter<T>, Disposable {

 }

而CreateEmitter又继承ObservableEmitter接口,又回调ObservableOnSubscribe的subscribe方法,对应着我们的:

Observable observable = Observable.create(new ObservableOnSubscribe<String>() {
   @Override
   public void subscribe(ObservableEmitter<String> emitter) throws Exception {
      emitter.onNext("Jack1");
      emitter.onNext("Jack2");
      emitter.onNext("Jack3");
      emitter.onComplete();
   }
});

当它发送消息既调用emitter.onNext()方法时,既调用了CreateEmitter的onNext()方法:

public void onNext(T t) {
  if (t == null) {
    onError(new NullPointerException("onNext called with null. Null values are generally not allowed in 2.x operators and sources."));
    return;
  }
  if (!isDisposed()) {
    observer.onNext(t);
  }
}

可以看到最终又回调了观察者的onNext()方法,把被观察者的数据传输给了观察者。有人会问

isDisposed()是什么意思,是判断要不要终止传递的,我们看emitter.onComplete()源码:

public void onComplete() {
  if (!isDisposed()) {
    try {
      observer.onComplete();
    } finally {
      dispose();
    }
  }
}

public static boolean dispose(AtomicReference<Disposable> field) {
    Disposable current = field.get();
    Disposable d = DISPOSED;
    if (current != d) {
      current = field.getAndSet(d);
      if (current != d) {
        if (current != null) {
          current.dispose();
        }
        return true;
      }
    }
    return false;
 }

public static boolean isDisposed(Disposable d) {
    return d == DISPOSED;
}

dispose()方法是终止消息传递,也就付了个DISPOSED常量,而isDisposed()方法就是判断这个常量而已。这就是整个消息订阅发送的过程,用的是观察者模式。

线程切换

在上面模板代码的基础上,线程切换只是改变了如下代码:

observable.subscribeOn(Schedulers.io())
     .observeOn(AndroidSchedulers.mainThread())
     .subscribe(observer);

下面我们对线程切换的源码进行一下分析,分为两部分:subscribeOn()和observeOn()

subscribeOn()

首先是subscribeOn()源码如下:

public final Observable<T> subscribeOn(Scheduler scheduler) {
  ObjectHelper.requireNonNull(scheduler, "scheduler is null");
  return RxJavaPlugins.onAssembly(new ObservableSubscribeOn<T>(this, scheduler));
}

我们传进去了一个Scheduler类,Scheduler是一个调度类,能够延时或周期性地去执行一个任务。

Scheduler有如下类型:

类型 使用方式 含义 使用场景
IoScheduler Schedulers.io() io操作线程 读写SD卡文件,查询数据库,访问网络等IO密集型操作
NewThreadScheduler Schedulers.newThread() 创建新线程 耗时操作等
SingleScheduler Schedulers.single() 单例线程 只需一个单例线程时
ComputationScheduler Schedulers.computation() CPU计算操作线程 图片压缩取样、xml,json解析等CPU密集型计算
TrampolineScheduler Schedulers.trampoline() 当前线程 需要在当前线程立即执行任务时
HandlerScheduler AndroidSchedulers.mainThread() Android主线程 更新UI等

接着就没什么了,只是返回一个ObservableSubscribeOn对象而已。

observeOn()

首先看源码如下:

public final Observable<T> observeOn(Scheduler scheduler) {
  return observeOn(scheduler, false, bufferSize());
}

public final Observable<T> observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
  ObjectHelper.requireNonNull(scheduler, "scheduler is null");
  ObjectHelper.verifyPositive(bufferSize, "bufferSize");
  return RxJavaPlugins.onAssembly(new ObservableObserveOn<T>(this, scheduler, delayError, bufferSize));
}

这里也是没什么,只是最终返回一个ObservableObserveOn对象而已。

接着还是像原来那样调用subscribe()方法进行订阅,看起来好像整体变化不大,就是封装了一些对象而已,不过着恰恰是RxJava源码的精华,当他再次调用subscribeActual()方法时,已经不是之前的ObservableCreate()里subscribeActual方法了,而是最先调用ObservableObserveOn的subscribeActual()方法,对应源码如下:

protected void subscribeActual(Observer<? super T> observer) {
  if (scheduler instanceof TrampolineScheduler) {
    source.subscribe(observer);
  } else {
    Scheduler.Worker w = scheduler.createWorker();
    source.subscribe(new ObserveOnObserver<T>(observer, w, delayError, bufferSize));
  }
}

在这里有两点要讲,一点是ObserveOnObserver是执行观察者的线程,后面还会详解,然后就是source.subscribe,这个source.subscribe调的是ObservableSubscribeOn的subscribe方法,而subscribe方法因为继承的也是Observable,是Observable里的方法,所以和上面的ObservableCreate一样的方法,所以会调用ObservableSubscribeOn里的subscribeActual()方法,对应的代码如下:

public void subscribeActual(final Observer<? super T> s) {
  final SubscribeOnObserver<T> parent = new SubscribeOnObserver<T>(s);
  s.onSubscribe(parent);
  parent.setDisposable(scheduler.scheduleDirect(new SubscribeTask(parent)));
}

上面代码中,首先把ObserveOnObserver返回给来的用SubscribeOnObserver“包装”起来,然后在回调Observer的onSubscribe(),就是对应模板代码的onSubscribe()方法。

接着看SubscribeTask类的源码:

final class SubscribeTask implements Runnable {
  private final SubscribeOnObserver<T> parent;
  SubscribeTask(SubscribeOnObserver<T> parent) {
    this.parent = parent;
  }
  @Override
  public void run() {
    source.subscribe(parent);
  }
}

其中的source.subscribe(parent),就是我们执行子线程的回调方法,对应我们模板代码里的被观察者的subscribe()方法。它放在run()方法里,并且继承Runnable,说明这个类主要是线程运行。接着看scheduler.scheduleDirect()方法对应的源码如下:

public Disposable scheduleDirect(@NonNull Runnable run) {
  return scheduleDirect(run, 0L, TimeUnit.NANOSECONDS);
}

public Disposable scheduleDirect(@NonNull Runnable run, long delay, @NonNull TimeUnit unit) {
  final Worker w = createWorker();
  final Runnable decoratedRun = RxJavaPlugins.onSchedule(run);
  DisposeTask task = new DisposeTask(decoratedRun, w);
  w.schedule(task, delay, unit);
  return task;
}

在这里,createWorker()也是一个抽象方法,调用的是我们的调度类对应的Schedulers类里面的方法,这里是IoScheduler类,

public final class IoScheduler extends Scheduler{

  final AtomicReference<CachedWorkerPool> pool;

  //省略....

  public Worker createWorker() {
    return new EventLoopWorker(pool.get());
  }

  static final class EventLoopWorker extends Scheduler.Worker {
    private final CompositeDisposable tasks;
    private final CachedWorkerPool pool;
    private final ThreadWorker threadWorker;

    final AtomicBoolean once = new AtomicBoolean();

    EventLoopWorker(CachedWorkerPool pool) {
      this.pool = pool;
      this.tasks = new CompositeDisposable();
      this.threadWorker = pool.get();
    }

    //省略....

    @NonNull
    @Override
    public Disposable schedule(@NonNull Runnable action, long delayTime, @NonNull TimeUnit unit) {
      if (tasks.isDisposed()) {
        // don't schedule, we are unsubscribed
        return EmptyDisposable.INSTANCE;
      }
      return threadWorker.scheduleActual(action, delayTime, unit, tasks);
    }
  }

}

 static final class CachedWorkerPool implements Runnable {

  //省略....

  ThreadWorker get() {
    if (allWorkers.isDisposed()) {
      return SHUTDOWN_THREAD_WORKER;
    }
    while (!expiringWorkerQueue.isEmpty()) {
      ThreadWorker threadWorker = expiringWorkerQueue.poll();
      if (threadWorker != null) {
        return threadWorker;
      }
    }

    ThreadWorker w = new ThreadWorker(threadFactory);
    allWorkers.add(w);
    return w;
   }
   //省略....
}

这就是IoScheduler的createWorker()的方法,其实最主要的意思就是获取线程池,以便于生成子线程,让SubscribeTask()可以运行。然后直接调用 w.schedule(task, delay, unit)方法让它在线程池里执行。上面中那ThreadWorker的源码如下:

static final class ThreadWorker extends NewThreadWorker {
  private long expirationTime;
  ThreadWorker(ThreadFactory threadFactory) {
    super(threadFactory);
    this.expirationTime = 0L;
  }

  //省略代码....
 }

public class NewThreadWorker extends Scheduler.Worker implements Disposable {
  private final ScheduledExecutorService executor;

  public NewThreadWorker(ThreadFactory threadFactory) {
    executor = SchedulerPoolFactory.create(threadFactory);
  }

  public ScheduledRunnable scheduleActual(final Runnable run, long delayTime, @NonNull TimeUnit unit, @Nullable DisposableContainer parent) {
    Runnable decoratedRun = RxJavaPlugins.onSchedule(run);

    ScheduledRunnable sr = new ScheduledRunnable(decoratedRun, parent);

    if (parent != null) {
      if (!parent.add(sr)) {
        return sr;
      }
    }

    Future<?> f;
    try {
      if (delayTime <= 0) {
        f = executor.submit((Callable<Object>)sr);
      } else {
        f = executor.schedule((Callable<Object>)sr, delayTime, unit);
      }
      sr.setFuture(f);
    } catch (RejectedExecutionException ex) {
      if (parent != null) {
        parent.remove(sr);
      }
      RxJavaPlugins.onError(ex);
    }

    return sr;
  }
}

可以看到,这就调了原始的javaAPI来进行线程池操作。

然后最后一环在子线程调用source.subscribe(parent)方法,然后回调刚开始创建的ObservableCreate的subscribeActual(),既:

protected void subscribeActual(Observer<? super T> observer) {
    CreateEmitter<T> parent = new CreateEmitter<T>(observer);
    observer.onSubscribe(parent);
    try {
      source.subscribe(parent);
    } catch (Throwable ex) {
      Exceptions.throwIfFatal(ex);
      parent.onError(ex);
    }
}

进行消息的订阅绑定。

当我们在调用 emitter.onNext(内容)时,是在io线程里的,那回调的onNext()又是什么时候切换的?那就是前面为了整个流程流畅性没讲的在observeOn()里的ObserveOnObserver是执行观察者的线程的过程。

class ObserveOnObserver<T> extends BasicIntQueueDisposable<T>
  implements Observer<T>, Runnable {

    //省略代码....

    ObserveOnObserver(Observer<? super T> actual, Scheduler.Worker worker, boolean delayError, int bufferSize) {
      this.actual = actual;
      this.worker = worker;
      this.delayError = delayError;
      this.bufferSize = bufferSize;
    }

    @Override
    public void onSubscribe(Disposable s) {
      if (DisposableHelper.validate(this.s, s)) {
        this.s = s;
        if (s instanceof QueueDisposable) {
          @SuppressWarnings("unchecked")
          QueueDisposable<T> qd = (QueueDisposable<T>) s;
          int m = qd.requestFusion(QueueDisposable.ANY | QueueDisposable.BOUNDARY);
          if (m == QueueDisposable.SYNC) {
            sourceMode = m;
            queue = qd;
            done = true;
            actual.onSubscribe(this);
            schedule();
            return;
          }
          if (m == QueueDisposable.ASYNC) {
            sourceMode = m;
            queue = qd;
            actual.onSubscribe(this);
            return;
          }
        }
        queue = new SpscLinkedArrayQueue<T>(bufferSize);
        actual.onSubscribe(this);
      }
    }

    @Override
    public void onNext(T t) {
      if (done) {
        return;
      }
      if (sourceMode != QueueDisposable.ASYNC) {
        queue.offer(t);
      }
      schedule();
    }  

    void schedule() {
      if (getAndIncrement() == 0) {
        worker.schedule(this);
      }
    }
    //省略代码....
  }

当调用emitter.onNext(内容)方法,会调用上面的onNext()方法,然后在这个方法里会把数据压入一个队列,然后执行worker.schedule(this)方法,work是什么呢,还记得AndroidSchedulers.mainThread()吗,这个对应这个HandlerScheduler这个类,所以createWorker()对应着:

private static final class MainHolder {
    static final Scheduler DEFAULT = new HandlerScheduler(new Handler(Looper.getMainLooper()));
}

public Worker createWorker() {
  return new HandlerWorker(handler);
}

private static final class HandlerWorker extends Worker {
    private final Handler handler;
    private volatile boolean disposed;

    HandlerWorker(Handler handler) {
      this.handler = handler;
    }

    @Override
    public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
      if (run == null) throw new NullPointerException("run == null");
      if (unit == null) throw new NullPointerException("unit == null");
      if (disposed) {
        return Disposables.disposed();
      }
      run = RxJavaPlugins.onSchedule(run);
      ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);
      Message message = Message.obtain(handler, scheduled);
      message.obj = this; // Used as token for batch disposal of this worker's runnables.
      handler.sendMessageDelayed(message, unit.toMillis(delay));
      if (disposed) {
        handler.removeCallbacks(scheduled);
        return Disposables.disposed();
      }
      return scheduled;
    }
}

在next()方法里,运用android自带的Handler消息机制,通过把方法包裹在Message里,同通过handler.sendMessageDelayed()发送消息,就会在ui线程里回调Next()方法,从而实现从子线程切换到android主线程的操作。我们在主线程拿到数据就可以进行各种在主线程的操作了。

总结一下:

ObservableCreate 一> ObservableSubscribeOn 一> ObservableObserveOn为初始化顺序

当调用observable.subscribe(observer)时的执行顺序
ObservableObserveOn 一> ObservableSubscribeOn 一> ObservableCreate

当发送消息的执行顺序
ObservableCreate 一> ObservableSubscribeOn 一> ObservableObserveOn

以上就是消息订阅和线程切换的源码的所有讲解了。

为了让你们理解更清楚,我仿照RxJava写了大概的消息订阅和线程切换的最基本代码和基本功能,以帮助你们理解

https://github.com/jack921/RxJava2Demo

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于java 线程的几种状态(详解)

    线程可以有六种状态: 1.New(新创建) 2.Runnable(可运行)(运行) 3.Blocked(被阻塞) 4.Waiting(等待) 5.Timed waiting(计时等待) 6.Terminated(被终止) 新创建线程: 当用new操作符创建一个新线程时,如new Thread(r),该线程还没有开始运行,它的当前状态为new,在线程运行之前还有一些基础工作要做. 可运行线程: 一旦线程调用start方法,线程处于runnable状态.在这个状态下的线程可能正在运行也可能没有运行(

  • 总结Java中线程的状态及多线程的实现方式

    线程的状态 线程状态图: 说明: 线程共包括以下5种状态. 1. 新建状态(New) : 线程对象被创建后,就进入了新建状态.例如,Thread thread = new Thread(). 2. 就绪状态(Runnable): 也被称为"可执行状态".线程对象被创建后,其它线程调用了该对象的start()方法,从而来启动该线程.例如,thread.start().处于就绪状态的线程,随时可能被CPU调度执行. 3. 运行状态(Running) : 线程获取CPU权限进行执行.需要注意

  • Java线程的生命周期和状态控制_动力节点Java学院整理

    一.线程的生命周期 线程状态转换图: 1.新建状态 用new关键字和Thread类或其子类建立一个线程对象后,该线程对象就处于新生状态.处于新生状态的线程有自己的内存空间,通过调用start方法进入就绪状态(runnable). 注意:不能对已经启动的线程再次调用start()方法,否则会出现Javalang.IllegalThreadStateException异常. 2.就绪状态 处于就绪状态的线程已经具备了运行条件,但还没有分配到CPU,处于线程就绪队列(尽管是采用队列形式,事实上,把它称

  • Java实现监控多个线程状态的简单实例

    实例如下: import java.util.concurrent.CountDownLatch; import java.util.concurrent.Executor; import java.util.concurrent.Executors; /** * 测试监控类 * * @author * */ public class WatchThread { /** * 测试函数 * * @throws InterruptedException */ public void testThre

  • Java线程的新建和就绪状态实例分析

    本文实例讲述了Java线程的新建和就绪状态.分享给大家供大家参考,具体如下: 一 点睛 当线程被创建启动以后,它既不是一启动就进入执行状态,也不是一直处于执行状态,在线程的生命周期中,它要经过新建.就绪.运行.阻塞和死亡5种状态.当线程启动后,它不可能一直霸占CPU独自运行,所以CPU需要在多个线程之间切换,于是线程状态也会多次在运行和就绪之间切换. 当程序使用new关键字创建一个线程后,该线程就处于新建状态. 当线程对象调用start()方法之后,该线程就处于就绪状态,处于这个状态的线程并没有

  • 学习Java多线程之线程定义、状态和属性

    一 .线程和进程 1. 什么是线程和进程的区别: 线程是指程序在执行过程中,能够执行程序代码的一个执行单元.在java语言中,线程有四种状态:运行 .就绪.挂起和结束. 进程是指一段正在执行的程序.而线程有事也被成为轻量级的进程,他得程序执行的最小单元,一个进程可以拥有多个线程,各个线程之间共享程序的内功空间(代码段.数据段和堆空间)及一些进程级的资源(例如打开的文件),但是各个线程都拥有自己的棧空间. 2. 为何要使用多进程 在操作系统级别上来看主要有以下几个方面: - 使用多线程可以减少程序

  • Java 实现多线程切换等待唤醒交替打印奇偶数

    引言 在日常工作生活中,可能会有用时几个人或是很多人干同一件事,在java编程中,同样也会出现类似的情况,多个线程干同样一个活儿,比如火车站买票系统不能多个人买一到的是同一张票,当某个窗口(线程)在卖某一张票的时候,别的窗口(线程)不允许再卖此张票了,在此过程中涉及到一个锁和资源等待的问题,如何合理正确的让线程与线程在干同一件事的过程中,不会抢资源以及一个一直等待一个一直干活的状况,接下来就聊一下多线程的等待唤醒以及切换的过程,在此就以A和B两个线程交替打印奇偶数的例子为例,代码如下: pack

  • Java线程池运行状态监控实现解析

    在实际开发过程中,在线程池使用过程中可能会遇到各方面的故障,如线程池阻塞,无法提交新任务等. 如果你想监控某一个线程池的执行状态,线程池执行类 ThreadPoolExecutor 也给出了相关的 API, 能实时获取线程池的当前活动线程数.正在排队中的线程数.已经执行完成的线程数.总线程数等. 总线程数 = 排队线程数 + 活动线程数 + 执行完成的线程数. 线程池使用示例: private static ExecutorService es = new ThreadPoolExecutor(

  • java中线程的状态学习笔记

    java开发中,我们经常会遇到线程的问题,比如你做一个商城,就需要考虑它的并发问题等等,今天给大家分享一下java中线程的状态 先说线程的第一个状态,是新建状态,这个是线程刚刚创建的时候,如: new Thread(),具体如图 线程的第二种状态是可执行状态,就是调用了start方法后的状态,当然了,一个运行的状态,他有可能是正在运行的,也有可能是没有运行的,只是他的状态是可运行的状态,具体如图 第三种状态是被阻塞或者处于等待的线程,处于这种状态下的线程是不活动且不运行的,比如说调用了wait方

  • Java线程状态及切换、关闭线程的正确姿势分享

    前言 在讲线程之前有必要讨论一下进程的定义:进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位.进程实体由程序段, 数据段 PCB(进程控制块)组成.线程又是什么?线程可以看做轻量级进程,线程是进程的执行单元,是进程调度的基本单位 本文将详细介绍关于Java线程状态及切换.关闭线程的相关内容,下面话不多说了,来一起看看详细的介绍吧 1.线程状态及切换 Java中的线程有六种状态,使用线程Thread内的枚举类来实现,如下,我对每个状态都进行了一定的解释. public

随机推荐