详解pandas数据合并与重塑(pd.concat篇)

1 concat

concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
    keys=None, levels=None, names=None, verify_integrity=False)

参数说明

  • objs: series,dataframe或者是panel构成的序列lsit
  • axis: 需要合并链接的轴,0是行,1是列
  • join:连接的方式 inner,或者outer

其他一些参数不常用,用的时候再补上说明。

1.1 相同字段的表首尾相接

# 现将表构成list,然后在作为concat的输入
In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)

要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])

效果如下

1.2 横向表拼接(行对齐)

1.2.1 axis

当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并

In [9]: result = pd.concat([df1, df4], axis=1)

1.2.2 join

加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')

1.2.3 join_axes

如果有join_axes的参数传入,可以指定根据那个轴来对齐数据

例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接

In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

1.3 append

append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)

In [12]: result = df1.append(df2)

1.4 无视index的concat

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。

1.5 合并的同时增加区分数据组的键

前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源

1.5.1 可以直接用key参数实现

In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])

1.5.2 传入字典来增加分组键

In [28]: pieces = {'x': df1, 'y': df2, 'z': df3}
In [29]: result = pd.concat(pieces)

1.6 在dataframe中加入新的行

append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。

In [34]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

In [35]: result = df1.append(s2, ignore_index=True)

表格列字段不同的表合并

如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。

In [36]: dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},
  ....:     {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]
  ....: 

In [37]: result = df1.append(dicts, ignore_index=True)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • pandas进行数据的交集与并集方式的数据合并方法

    数据合并有多种方式,其中最常见的应该就是交集和并集的求取.之前通过分析总结过pandas数据merge功能默认的行为,其实默认下求取的就是两个数据的"交集". 有如下数据定义: In [26]: df1 Out[26]: data1 key 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 a 6 6 b In [27]: df2 Out[27]: data2 key 0 0 a 1 1 b 2 2 d 3 3 b 进行merge的结果: In [28]: pd.me

  • pandas DataFrame实现几列数据合并成为新的一列方法

    问题描述 我有一个用于模型训练的DataFrame如下图所示: 其中的country.province.city.county四列其实是位置信息的不同层级,应该合成一列用于模型训练 方法: parent_teacher_data['address'] = parent_teacher_data['country']+parent_teacher_data['province']+parent_teacher_data['city']+parent_teacher_data['county'] 就

  • Pandas 按索引合并数据集的方法

    如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.merge函数 left1 = DataFrame({'水果':['苹果','梨','草莓'], '价格':[3,4,5], '数量':[9,8,7]}).set_index('水果') right1 = DataFrame({'水果':['苹果','草莓'], '产地':['美国','中国']}) print(left1) pri

  • 在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

    最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind

  • python:pandas合并csv文件的方法(图书数据集成)

    数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析. 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInformation.csv: ReaderRentRecode.csv: pandas读取csv文件,并进行csv文件合并处理: # -*- coding:utf-8 -*- import csv as csv import numpy as np # ------------- # csv读取表格数据 # ---

  • 详解PANDAS 数据合并与重塑(join/merge篇)

    在上一篇文章中,我整理了pandas在数据合并和重塑中常用到的concat方法的使用说明.在这里,将接着介绍pandas中也常常用到的join 和merge方法 merge pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效. 和SQL语句的对比可以看这里 merge的参数 on:列名,join用来对齐的那一列的名字,用到这个参数的时候一定要保证左表和右表用来对齐的那一列都有相同的列名. left_on:左表对齐的列,

  • 详解pandas数据合并与重塑(pd.concat篇)

    1 concat concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False) 参数说明 objs: series,dataframe或者是panel构成的序列lsit axis: 需要合并链接的轴,0是行,1是列

  • pandas数据合并之pd.concat()用法详解

    目录 一.简介 二 .代码 例1:上下堆叠拼接 例2:axis=1 左右拼接 一.简介 pd.concat()函数可以沿着指定的轴将多个dataframe或者series拼接到一起. 基本语法: pd.concat( objs, axis=0, join=‘outer’, join_axes=None,ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=Tr

  • Python Pandas数据合并pd.merge用法详解

    目录 前言 语法 参数 1.连接键 2.索引连接 3.多连接键 4.连接方法 5.连接指示 总结 前言 实现类似SQL的join操作,通过pd.merge()方法可以自由灵活地操作各种逻辑的数据连接.合并等操作 可以将两个DataFrame或Series合并,最终返回一个合并后的DataFrame 语法 pd.merge(left, right, how = 'inner', on = None, left_on = None, right_on = None, left_index = Fal

  • 详解pandas中利用DataFrame对象的.loc[]、.iloc[]方法抽取数据

    pandas的DataFrame对象,本质上是二维矩阵,跟常规二维矩阵的差别在于前者额外指定了每一行和每一列的名称.这样内部数据抽取既可以用"行列名称(对应.loc[]方法)",也可以用"矩阵下标(对应.iloc[]方法)"两种方式进行. 下面具体说明: (以下程序均在Jupyter notebook中进行,部分语句的print()函数省略) 首先生成一个DataFrame对象: import pandas as pd score = [[34,67,87],[68

  • 详解Pandas如何高效对比处理DataFrame的两列数据

    目录 楔子 combine_first combine update 楔子 我们在用 pandas 处理数据的时候,经常会遇到用其中一列数据替换另一列数据的场景.比如 A 列和 B 列,对 A 列中不为空的数据不作处理,对 A 列中为空的数据使用 B 列对应索引的数据进行替换.这一类的需求估计很多人都遇到,当然还有其它更复杂的. 解决这类需求的办法有很多,这里我们来推荐几个. combine_first 这个方法是专门用来针对空值处理的,我们来看一下用法. import pandas as pd

  • 详解Pandas 处理缺失值指令大全

    前言 运用pandas 库对所得到的数据进行数据清洗,复习一下相关的知识. 1 数据清洗 1.1 处理缺失数据 对于数值型数据,分为缺失值(NAN)和非缺失值,对于缺失值的检测,可以通过Python中pandas库的Series类对象的isnull方法进行检测. import pandas as pd import numpy as np string_data = pd.Series(['Benzema', 'Messi', np.nan, 'Ronaldo']) string_data.is

  • 详解Pandas中stack()和unstack()的使用技巧

    目录 介绍 1.单层 2.多层次:简单案例 3. 多层次:缺失值 4. 多层次:规定要堆叠的层次 5. 多层次:删除缺失值 6. unstack: 简单案例 7. unstack:更多用法 结论 介绍 Pandas 提供了各种用于重塑 DataFrame 的内置方法.其中,stack() 和 unstack() 是最流行的 2 种重组列和行的方法: stack():从列到行堆叠 unstack():从行到列取消堆叠 stack() 和 unstack() 似乎使用起来相当简单,但你仍然应该知道一

  • 详解Pandas中GroupBy对象的使用

    目录 使用 Groupby 三个步骤 将原始对象拆分为组 按组应用函数 Aggregation Transformation Filtration 整合结果 总结 今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理.我们将详细了解分组过程的每个步骤,可以将哪些方法应用于 GroupBy 对象上,以及我们可以从中提取哪些有用信息 不要再观望了,一起学起来吧 使用 Groupby 三个步骤 首先我们要知道,任何 groupby 过程都涉及以下

  • 详解pandas中iloc, loc和ix的区别和联系

    Pandas库十分强大,但是对于切片操作iloc, loc和ix,很多人对此十分迷惑,因此本篇博客利用例子来说明这3者之一的区别和联系,尤其是iloc和loc. 对于ix,由于其操作有些复杂,我在另外一篇博客专门详细介绍ix. 首先,介绍这三种方法的概述: loc gets rows (or columns) with particular labels from the index. loc从索引中获取具有特定标签的行(或列).这里的关键是:标签.标签的理解就是name名字. iloc get

随机推荐