python matplotlib折线图样式实现过程

这篇文章主要介绍了python matplotlib折线图样式实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

一:简单的折线图

import matplotlib.pyplot as plt

#支持中文显示
plt.rcParams["font.sans-serif"]=["SimHei"]

#x,y数据
x_data = [1,2,3,4,5]
y_data = [10,30,20,25,28]

plt.plot(x_data,y_data)

plt.title("简单的折线图")
plt.xlabel("x")
plt.ylabel("y")

plt.show()

二、多折线折线图

import matplotlib.pyplot as plt

#x,y数据
x_data = [1,2,3,4,5]
y_data = [10,30,20,25,28]
y_data_1 = [12,32,22,27,30]
y_data_2 = [8,28,18,23,25]
plt.plot(x_data,y_data,x_data,y_data_1,x_data,y_data_2)
"""
plt.plot(x_data,y_data,x_data,y_data_1)
此行可替代为
plt.plot(x_data,y_data)
plt.plot(x_data,y_data_1)
plt.plot(x_data,y_data_2)

"""
plt.show()

三、折线样式:折线颜色、折线图案 、折线宽度

import matplotlib.pyplot as plt
#x,y数据
x_data = [1,2,3,4,5]

y_data = [10,30,20,25,28]
y_data_1 = [12,32,22,27,30]
plt.plot(x_data,y_data,color="red",linewidth=2.0,linestyle="--")
plt.plot(x_data,y_data_1,color="blue",linewidth=2.0,linestyle="-.")
plt.show()

注:

①color参数:

  • 颜色名称或简写#rrggbb

    • b: blue
    • g: green
    • r: red
    • c: cyan
    • m: magenta
    • y: yellow
    • k: black
    • w: white
  • #rrggbb
  • (r, g, b) 或 (r, g, b, a),其中 r g b a 取均为[0, 1]之间
  • [0, 1]之间的浮点数的字符串形式,表示灰度值。0表示黑色,1表示白色

②linestyle参数

-:代表实线,这是默认值;

--:代表虚线;

·:代表点钱;

-.:代表短线、点相间的虚钱

四、折线图的注解

import numpy as np
import matplotlib.pyplot as plt

#x,y数据
x_data = np.linspace(0, 2 * np.pi, 100)
y_data, y2_data = np.sin(x_data), np.cos(x_data)

plt.plot(x_data,y_data,label="y=sinx")
plt.plot(x_data,y2_data,label="y=cosx")
plt.legend()

plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python库matplotlib绘制坐标图

    很多时候我们数据处理的时候要画坐标图,下面我用第三方库matplotlib以及scipy绘制光滑的曲线图 需要安装的库有 matplotlib,scipy, numpy import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axisartist.axislines import Subplot from scipy import interpolate def sommth_plot(x_arr, y_arr):

  • python使用matplotlib绘制雷达图

    本文实例为大家分享了python使用matplotlib绘制雷达图的具体代码,供大家参考,具体内容如下 示例代码: # encoding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['KaiTi'] # 显示中文 labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) #

  • python matplotlib拟合直线的实现

    这篇文章主要介绍了python matplotlib拟合直线的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['SimHei'] def linear_regression

  • python使用PIL和matplotlib获取图片像素点并合并解析

    python 版本 3.x 首先安装 PIL 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow. 所以 安装: pip install pillow 获取像素点 import numpy as np from PIL import Image img = Image.open("./b.png").convert('RGBA'

  • python matplotlib饼状图参数及用法解析

    这篇文章主要介绍了python matplotlib饼状图参数及用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在python的matplotlib画图函数中,饼状图的函数为pie pie函数参数解读 plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, star

  • Python matplotlib生成图片背景透明的示例代码

    使用matplotlib生成图片,想要背景透明,而且图例部分也显示透明效果,找到了大概的设置方法,特此记录. # coding=utf-8 # matplotlib背景透明示例图 # python 3.5 import numpy as np import matplotlib.pyplot as plt from pylab import mpl import scipy.stats as stats # 设置中文字体 mpl.rcParams['font.sans-serif'] = ['S

  • python调用Matplotlib绘制分布点图

    Python调用Matplotlib代码绘制分布点,供大家参考,具体内容如下 绘制点图的目的 Matplotlib简介 代码 截图 1.绘制点图的目的 我们实验室正在做关于人脸识别的项目,其中在人脸检测后,会有些误检的图片,但是其中就有很多不符合的.很明显的是从图片大小,就可以过滤掉一部分.老大交给我的工作,就是通过绘制图片width,height的分布图,来找到一个合理的阈值. 2.Matlablib简介 Matplotlib是一个Python的图形框架 下面是官网的例子 Matplotlib

  • python使用Matplotlib改变坐标轴的默认位置

    使用Matplotlib绘制的图表的默认坐标轴是在左下角的,这样对于一些函数的显示不是非常方便,要改变坐标轴的默认显示方式主要要使用gca()方法 plt.gca()表示 Get current axis,使用这个方法我们可以获得整张图表的坐标对象,这样我们就可以对坐标进行处理了,像移动位置,设置颜色之类的,类似plt.gcf()这个是 Get current figure 即获得当前图表的图像,对图像进行处理. 我们可以定义一个变量接收这个值: ax = plt.gca() 接下来还要了解一个

  • Python使用matplotlib 画矩形的三种方式分析

    本文实例讲述了Python使用matplotlib 画矩形的三种方式.分享给大家供大家参考,具体如下: 假设矩形两点坐标如下,分别为:x1, y1, x2, y2 cat_dict['bbox'][i] = (min_row, min_col, max_row, max_col) 1. plt.plot(x,y) 这种方式画的矩形 因为边距的问题 会放缩 plt.plot([cat_dict['bbox'][i][1], cat_dict['bbox'][i][3], cat_dict['bbo

  • python matplotlib折线图样式实现过程

    这篇文章主要介绍了python matplotlib折线图样式实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一:简单的折线图 import matplotlib.pyplot as plt #支持中文显示 plt.rcParams["font.sans-serif"]=["SimHei"] #x,y数据 x_data = [1,2,3,4,5] y_data = [10,30,20,25,28] plt.

  • Python数据分析matplotlib折线图案例处理

    目录 前言 python之matplotlib使用系统字体 实例1:温度变化统计 实例2:交友数量折线图 前言 以下分享折线图小案例,matplotlib还可以进行多种图形的绘制,可以进入官网https://matplotlib.org/gallery/index.html,点击examples,如需学习,选择要学习的图进入,里面包含有代码 python之matplotlib使用系统字体 1.导包from matplotlib.font_manager import FontProperties

  • Python数据分析之 Matplotlib 折线图绘制

    目录 一.Matplotlib 绘图 简单示例 二.折线图绘制 一.Matplotlib 绘图 在数据分析中,数据可视化也非常重要,通过直观的展示过程.结果数据,可以帮助我们清晰的理解数据,进而更好的进行分析.接下来就说一下Python数据分析中的数据可视化工具 Matplotlib 库. Matplotlib 是一个非常强大的Python 2D绘图库,使用它,我们可以通过图表的形式更直观的展现数据,实现数据可视化,使用起来也非常方便,而且支持绘制折线图.柱状图.饼图.直方图.散点图等. 可以使

  • Python可视化Matplotlib折线图plot用法详解

    目录 1.完善原始折线图 - 给图形添加辅助功能 1.1 准备数据并画出初始折线图 1.2 添加自定义x,y刻度 1.3 中文显示问题解决 1.4 添加网格显示 1.5 添加描述信息 1.6 图像保存 2. 在一个坐标系中绘制多个图像 2.1 多次plot 2.2 显示图例 2.3 折线图的应用场景 折线图是数据分析中非常常用的图形.其中,折线图主要是以折线的上升或下降来表示统计数量的增减变化的统计图.用于分析自变量和因变量之间的趋势关系,最适合用于显示随着时间而变化的连续数据,同时还可以看出数

  • 修改python plot折线图的坐标轴刻度方法

    修改python plot折线图的坐标轴刻度,这里修改为整数: 代码如下: from matplotlib import pyplot as plt import matplotlib.ticker as ticker import numpy as np def std_plot(): overall_std = [34.369, 21.366, 16.516, 11.151] max_std = [36.769, 21.794, 14.390, 4.684] plt.figure() plt

  • python绘制折线图和条形图的方法

    本文实例为大家分享了python绘制折线图和条形图的具体代码,供大家参考,具体内容如下 最近开始写小论文啦,中间不免要作各种各样的图,学习后自己作了个小笔记,供小伙伴一起学习哦. 折线图 import matplotlib.pyplot as plt #x轴取值不一样时 # x1=[0,0.1,0.3,0.5,0.7,0.8,0.9] # y1=[0.7150,0.7147,0.7088,0.7029,0.6996,0.6942,0.5599] # x2=[0,0.1,0.2,0.5,0.6,0

  • Matplotlib 折线图plot()所有用法详解

    散点图和折线图是数据分析中最常用的两种图形.其中,折线图用于分析自变量和因变量之间的趋势关系,最适合用于显示随着时间而变化的连续数据,同时还可以看出数量的差异,增长情况. Matplotlib 中绘制散点图的函数为 plot() ,使用语法如下:matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs) 常用参数及说明: 参数 接收值 说明 默认值 x,y array 表示 x 轴与 y 轴对应的数据:

  • Python绘制折线图可视化神器pyecharts案例

    目录 前言 折线图模板系列 自定义标签数据折线图 一天用电量折线图(特定场景) 断点折线图(根据场景进行配置) 双折线图显示最低最高数据标签(不显示其他数据标签) 双折线图显示平均刻度数据标签(数据可显示) 断点折线图(显示数据项) 面积折线图(不紧贴) 3D旋转弹簧图 前言 相信有很多的小伙伴看了如此多个案例之后肯定有所发现,每一个案例都对应着每一个配置,如果是官方配置文档,说实话看起来真的很难,这样通过案例实现来解决各种参数的配置,我觉得有一定的参考价值和学习意义,正所谓“磨刀不误砍工”,如

  • python画折线图的程序

    前做PPT要用到折线图,嫌弃EXCEL自带的看上去不好看,就用python写了一个画折线图的程序. import matplotlib.pyplot as plt x=[1,2,3,4,5,6] y1=[35000,85000,120000] y2=[45000,85000,100000] y3=[25000,65000,90000] point1=180180 point2=200000 plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中

  • Python matplotlib实现折线图的绘制

    目录 一.版本 二.图表主题设置 三.一次函数 四.多个一次函数 五.填充折线图 官网: https://matplotlib.org 一.版本 # 01 matplotlib安装情况 import matplotlib matplotlib.__version__ 二.图表主题设置 请点击:图表主题设置 三.一次函数 import numpy as np from matplotlib import pyplot as plt # 如何使用中文标题 plt.rcParams['font.san

随机推荐