python实现狄克斯特拉算法

一、简介

是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止

二、步骤

(1) 找出“最便宜”的节点,即可在最短时间内到达的节点。
(2) 更新该节点的邻居的开销,其含义将稍后介绍。
(3) 重复这个过程,直到对图中的每个节点都这样做了。
(4) 计算最终路径。

三、图解

上图中包括5个节点,箭头表示方向,线上的数字表示消耗时间。
首先根据上图做出一个初始表(父节点代表从哪个节点到达该节点):

然后从“起点”开始,根据图中的信息更新一下表,由于从“起点”不能直接到达“终点”节点,所以耗时为∞(无穷大):

有了这个表我们可以根据算法的步骤往下进行了。

第一步:找出“最便宜”的节点,这里是节点B:

第二步:更新该节点的邻居的开销,根据图从B出发可以到达A和“终点”节点,B目前的消耗2+B到A的消耗3=5,5小于原来A的消耗6,所以更新节点A相关的行:

同理,B目前消耗2+B到End的消耗5=7,小于∞,更新“终点”节点行:

B节点关联的节点已经更新完成,所以B节点不在后面的更新范围之内了:

找到下一个消耗最小的节点,那就是A节点:

根据A节点的消耗更新关联节点,只有End节点行被更新了:

这时候A节点也不在更新节点范围之内了:

最终表的数据如下:

根据最终表,从“起点”到“终点”的最少消耗是6,路径是起点->B->A->终点.

四、代码实现

# -*-coding:utf-8-*-
# 用散列表实现图的关系
# 创建节点的开销表,开销是指从"起点"到该节点的权重
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2

graph["a"] = {}
graph["a"]["end"] = 1

graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["end"] = 5
graph["end"] = {}

# 无穷大
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["end"] = infinity

# 父节点散列表
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["end"] = None

# 已经处理过的节点,需要记录
processed = []

# 找到开销最小的节点
def find_lowest_cost_node(costs):
 # 初始化数据
 lowest_cost = infinity
 lowest_cost_node = None
 # 遍历所有节点
 for node in costs:
 # 该节点没有被处理
 if not node in processed:
  # 如果当前节点的开销比已经存在的开销小,则更新该节点为开销最小的节点
  if costs[node] < lowest_cost:
  lowest_cost = costs[node]
  lowest_cost_node = node
 return lowest_cost_node

# 找到最短路径
def find_shortest_path():
 node = "end"
 shortest_path = ["end"]
 while parents[node] != "start":
 shortest_path.append(parents[node])
 node = parents[node]
 shortest_path.append("start")
 return shortest_path

# 寻找加权的最短路径
def dijkstra():
 # 查询到目前开销最小的节点
 node = find_lowest_cost_node(costs)
 # 只要有开销最小的节点就循环(这个while循环在所有节点都被处理过后结束)
 while node is not None:
 # 获取该节点当前开销
 cost = costs[node]
 # 获取该节点相邻的节点
 neighbors = graph[node]
 # 遍历当前节点的所有邻居
 for n in neighbors.keys():
  # 计算经过当前节点到达相邻结点的开销,即当前节点的开销加上当前节点到相邻节点的开销
  new_cost = cost + neighbors[n]
  # 如果经当前节点前往该邻居更近,就更新该邻居的开销
  if new_cost < costs[n]:
  costs[n] = new_cost
  #同时将该邻居的父节点设置为当前节点
  parents[n] = node
 # 将当前节点标记为处理过
 processed.append(node)
 # 找出接下来要处理的节点,并循环
 node = find_lowest_cost_node(costs)
 # 循环完毕说明所有节点都已经处理完毕
 shortest_path = find_shortest_path()
 shortest_path.reverse()
 print(shortest_path)
# 测试
dijkstra()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python使用Dijkstra算法实现求解图中最短路径距离问题详解

    本文实例讲述了Python使用Dijkstra算法实现求解图中最短路径距离问题.分享给大家供大家参考,具体如下: 这里继续前面一篇<Python基于Floyd算法求解最短路径距离问题>的内容,这里要做的是Dijkstra算法,与Floyd算法类似,二者的用途均为求解最短路径距离,在图中有着广泛的应用,二者的原理都是老生常谈了,毕竟本科学习数据结构的同学是不可能不学习这两个算法的,所以在这里我也不再累赘,只简单概述一下这个算法的核心思想: Dijkstra算法的输入有两个参数,一个是原始的数据矩

  • Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个点到其他各顶点的路径--单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶

  • Python实现Dijkstra算法

    Dijkstra算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 迪杰斯特拉算法是求从某一个起点到其余所有结点的最短路径,是一对多的映射关系,是一种贪婪算法 示例: 算法 算法实现流程思路: 迪杰斯特拉算法每次只找离起点最近的一个结点,并将之并入已经访问过结点的集合(以防重复访问,陷入死循环),然后将刚找到的

  • python实现狄克斯特拉算法

    一.简介 是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止 二.步骤 (1) 找出"最便宜"的节点,即可在最短时间内到达的节点. (2) 更新该节点的邻居的开销,其含义将稍后介绍. (3) 重复这个过程,直到对图中的每个节点都这样做了. (4) 计算最终路径. 三.图解 上图中包括5个节点,箭头表示方向,线上的数字表示消耗时间. 首先根据上图做出一个初始表(父节点代表从哪个节点到达该节点): 然

  • Python实现迪杰斯特拉算法并生成最短路径的示例代码

    def Dijkstra(network,s,d):#迪杰斯特拉算法算s-d的最短路径,并返回该路径和代价 print("Start Dijstra Path--") path=[]#s-d的最短路径 n=len(network)#邻接矩阵维度,即节点个数 fmax=999 w=[[0 for i in range(n)]for j in range(n)]#邻接矩阵转化成维度矩阵,即0→max book=[0 for i in range(n)]#是否已经是最小的标记列表 dis=[

  • Python实现迪杰斯特拉算法过程解析

    一. 迪杰斯特拉算法思想 Dijkstra算法主要针对的是有向图的单元最短路径问题,且不能出现权值为负的情况!Dijkstra算法类似于贪心算法,其应用根本在于最短路径的最优子结构性质. 最短路径的最优子结构性质: 如果P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径. 证明: 假设P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)

  • C++用Dijkstra(迪杰斯特拉)算法求最短路径

    算法介绍 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. 算法思想 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增

  • Java 迪杰斯特拉算法实现查找最短距离的实现

    迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.具体的计算规则我们可以通过下图进行查看. 通过这幅图我们可以简单的理解迪杰斯特拉算法算法的基础思路,下面我们就通过JAVA来实现这个算法. 算法实现 在迪杰斯特拉算法中我们需要保存从起点开始到每一个节点最短步长,这也是图中需要比较得出的步长,同时我们还

  • python实现dijkstra最短路由算法

    Dijkstra算法:又称迪杰斯特拉算法,迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止百度百科. 注意:Dijkstra算法不能处理包含负边的图 # dijkstra算法实现,有向图和路由的源点作为函数的输入,最短路径最为输出 def dijkstra(graph,src): # 判断图是否为空,如果为空直接退出

  • 基于Python实现迪杰斯特拉和弗洛伊德算法

    图搜索之基于Python的迪杰斯特拉算法和弗洛伊德算法,供大家参考,具体内容如下 Djstela算法 #encoding=UTF-8 MAX=9 ''' Created on 2016年9月28日 @author: sx ''' b=999 G=[[0,1,5,b,b,b,b,b,b],\ [1,0,3,7,5,b,b,b,b],\ [5,3,0,b,1,7,b,b,b],\ [b,7,b,0,2,b,3,b,b],\ [b,5,1,2,0,3,6,9,b],\ [b,b,7,b,3,0,b,5

  • Python实现曲线点抽稀算法的示例

    本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下: 目录 何为抽稀 道格拉斯-普克(Douglas-Peuker)算法 垂距限值法 最后 正文 何为抽稀 在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便.多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准.因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀. 通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折

  • Python实现的数据结构与算法之双端队列详解

    本文实例讲述了Python实现的数据结构与算法之双端队列.分享给大家供大家参考.具体分析如下: 一.概述 双端队列(deque,全名double-ended queue)是一种具有队列和栈性质的线性数据结构.双端队列也拥有两端:队首(front).队尾(rear),但与队列不同的是,插入操作在两端(队首和队尾)都可以进行,删除操作也一样. 二.ADT 双端队列ADT(抽象数据类型)一般提供以下接口: ① Deque() 创建双端队列 ② addFront(item) 向队首插入项 ③ addRe

  • Python实现的最近最少使用算法

    本文实例讲述了Python实现的最近最少使用算法.分享给大家供大家参考.具体如下: # lrucache.py -- a simple LRU (Least-Recently-Used) cache class # Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> # Licensed under the Academic Free License 2.1 # Licensed for ftputil under the revised BSD

随机推荐