python高级特性和高阶函数及使用详解

python高级特性

1、集合的推导式

•列表推导式,使用一句表达式构造一个新列表,可包含过滤、转换等操作。

语法:[exp for item in collection if codition]

if codition - 可选

•字典推导式,使用一句表达式构造一个新列表,可包含过滤、转换等操作。

语法:{key_exp:value_exp for item in collection if codition}

•集合推导式

语法:{exp for item in collection if codition}

•嵌套列表推导式

2、多函数模式

函数列表,python中一切皆对象。

# 处理字符串
str_lst = ['$1.123', ' $1123.454', '$899.12312']
def remove_space(str):
  """
  remove space
  """
  str_no_space = str.replace(' ', '')
  return str_no_space
def remove_dollar(str):
  """
  remove $
  """
  if '$' in str:
    return str.replace('$', '')
  else:
    return str
def clean_str_lst(str_lst, operations):
  """
    clean string list
  """
  result = []
  for item in str_lst:
    for op in operations:
      item = op(item)
    result.append(item)
  return result
clean_operations = [remove_space, remove_dollar]
result = clean_str_lst(str_lst, clean_operations)
print result

执行结果:['1.123', '1123.454', '899.12312']

3、匿名函数lambda

•没有函数名
•单条语句组成
•语句执行的结果就是返回值
•可用作sort的key函数

python高阶函数

1、函数式编程

•函数本身可以赋值给变量,赋值后变量为函数;

•允许将函数本身作为参数传入另一个函数;

•允许返回一个函数。

2、map/reduce函数

•map(fun, lst),将传入的函数变量func作用到lst变量的每个元素中,并将结果组成新的列表返回

•reduce(func(x,y),lst),其中func必须有两个参数。每次func计算的结果继续和序列的下一个元素做累积计算。 

lst = [a1, a2 ,a3, ......, an]
  reduce(func(x,y), lst) = func(func(func(a1, a2), a3), ......, an)

3、filter函数

•筛选序列

•filter(func, lst),将func作用于lst的每个元素,然后根据返回值是True或False判断是保留还是丢弃该元素。

下面看下Python高级函数使用

map的使用:map(function, iterable, ...)

  map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

>>> def f(x):
...   return x + x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[2, 4, 6, 8, 10, 12, 14, 16, 18]
# 提供了两个列表,对相同位置的列表数据进行相加
>>> map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
[3, 7, 11, 15, 19]

reduce的使用:reduce(function, iterable[, initializer])

  reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算。

>>> from functools import reduce
>>> def add(x, y):
...   return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
>>> reduce(lambda x, y: x+y, [1,2,3,4,5]) # 使用 lambda 匿名函数
15
from functools import reduce
def add(x,y):
  return x + y
print (reduce(add, range(1, 101)))

filter的使用:filter(function, iterable)

  filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

def is_odd(n):
  return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
def not_empty(s):
  return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']

filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

sorted的使用:sorted(iterable[, cmp[, key[, reverse]]])

Python内置的sorted()函数就可以对list进行排序:

>>>a = [5,7,6,3,4,1,2]
>>> b = sorted(a)    # 保留原列表
>>> a
[5, 7, 6, 3, 4, 1, 2]
>>> b
[1, 2, 3, 4, 5, 6, 7]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
#key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:
#list = [36, 5, -12, 9, -21]
#keys = [36, 5, 12, 9, 21]
[5, 9, -12, -21, 36]
#字符串排序
>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

raw_input的使用:raw_input([prompt])

prompt: 可选,字符串,可作为一个提示语。

raw_input() 将所有输入作为字符串看待

>>>a = raw_input("input:")
input:123
>>> type(a)
<type 'str'>       # 字符串
>>> a = raw_input("input:")
input:runoob
>>> type(a)
<type 'str'>       # 字符串
>>>
input() 需要输入 python 表达式
>>>a = input("input:")
input:123         # 输入整数
>>> type(a)
<type 'int'>        # 整型
>>> a = input("input:")
input:"runoob"      # 正确,字符串表达式
>>> type(a)
<type 'str'>       # 字符串
>>> a = input("input:")
input:runoob        # 报错,不是表达式
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1, in <module>
NameError: name 'runoob' is not defined
<type 'str'>

总结

以上所述是小编给大家介绍的python高级特性和高阶函数及使用详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • 简单了解python高阶函数map/reduce

    高阶函数map/reduce Python内建了map()和reduce()函数. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下: 现在,我们用Python代码实现: def f(x): return x * x r =

  • Python的高阶函数用法实例分析

    本文实例讲述了Python的高阶函数用法.分享给大家供大家参考,具体如下: 高阶函数 1.MapReduce MapReduce主要应用于分布式中. 大数据实际上是在15年下半年开始火起来的. 分布式思想:将一个连续的字符串转为列表,元素类型为字符串类型,将其都变成数字类型,使用分布式思想[类似于一件事一个人干起来慢,但是如果人多呢?效率则可以相应的提高],同理,一台电脑处理数据比较慢,但是如果有100台电脑同时处理,则效率则会快很多,最终将每台电脑上处理的数据进行整合. python的优点:内

  • 详谈Python高阶函数与函数装饰器(推荐)

    一.上节回顾 Python2与Python3字符编码问题,不管你是初学者还是已经对Python的项目了如指掌了,都会犯一些编码上面的错误.我在这里简单归纳Python3和Python2各自的区别. 首先是Python3-->代码文件都是用utf-8来解释的.将代码和文件读到内存中就变成了Unicode,这也就是为什么Python只有encode没有decode了,因为内存中都将字符编码变成了Unicode,而Unicode是万国码,可以"翻译"所以格式编码的格式.Python3中

  • 详解Python函数式编程—高阶函数

    函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用.而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的. 函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数! Python对函数式编程提供部分支持.由于Python允许使用变量,因此,Python不是纯函数式编程语言. 高阶函数 变量

  • python绘制热力图heatmap

    本文实例为大家分享了python绘制热力图的具体代码,供大家参考,具体内容如下 python的热力图是用皮尔逊相关系数来查看两者之间的关联性. #encoding:utf-8 import numpy as np import pandas as pd from matplotlib import pyplot as plt from matplotlib import cm from matplotlib import axes import pylab pylab.mpl.rcParams[

  • 详细分析python3的reduce函数

    reduce() 函数在 python 2 是内置函数, 从python 3 开始移到了 functools 模块. 官方文档是这样介绍的 reduce(...) reduce(function, sequence[, initial]) -> value Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequen

  • Python中的map()函数和reduce()函数的用法

    Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文"MapReduce: Simplified Data Processing on Large Clusters",你就能大概明白map/reduce的概念. 我们先看map.map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回. 举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2,

  • python用reduce和map把字符串转为数字的方法

    python中reduce和map简介 map(func,seq1[,seq2...]) :将函数func作用于给定序列的每个元素,并用一个列表来提供返回值:如果func为None,func表现为身份函数,返回一个含有每个序列中元素集合的n个元组的列表. reduce(func,seq[,init]) :func为二元函数,将func作用于seq序列的元素,每次携带一对(先前的结果以及下一个序列的元素),连续的将现有的结果和下一个值作用在获得的随后的结果上,最后减少我们的序列为一个单一的返回值:

  • python高级特性和高阶函数及使用详解

    python高级特性 1.集合的推导式 •列表推导式,使用一句表达式构造一个新列表,可包含过滤.转换等操作. 语法:[exp for item in collection if codition] if codition - 可选 •字典推导式,使用一句表达式构造一个新列表,可包含过滤.转换等操作. 语法:{key_exp:value_exp for item in collection if codition} •集合推导式 语法:{exp for item in collection if

  • Python高级特性之闭包与装饰器实例详解

    本文实例讲述了Python高级特性之闭包与装饰器.分享给大家供大家参考,具体如下: 闭包 1.函数参数: (1)函数名存放的是函数的地址 (2)函数名()存放的是函数内的代码 (3)函数名只是函数代码空间的引用,当函数名赋值给一个对象的时候,就是引用传递 def func01(): print("func01 is show") test = func01 print(func01) print(test) test() 结果: 2.闭包: (1)内层函数可以访问外层函数变量 (2)闭

  • Vue数组响应式操作及高阶函数使用代码详解

    数组的响应式操作 //this.letters.push('123');//在末尾添加一个元素 //this.letters.pop();//从末尾删除一个元素 //this.letters.unshift('111');//在开端添加一个元素 //this.letters.shift();//从开端删除一个元素 //this.letters.splice(1,2);//从下标为1的元素开始删除两个元素 //this.letters.splice(1,2,'777','888');//从下标为1

  • Python中常用的高阶函数实例详解

    前言 高阶函数指的是能接收函数作为参数的函数或类:python中有一些内置的高阶函数,在某些场合使用可以提高代码的效率. lambda 当在使用一些函数的时候,我们不需要显式定义函数名称,直接传入lambda匿名函数即可.lambda匿名函数通常和其他函数搭配使用. 比如可以直接使用如下的lambda表达式计算当x=3时,y = x * 3 + 5的函数值. In [1]: (lambda x: x * 3 + 5)(3) Out[1]: 14 map map函数将一个函数和序列/迭代器(可以传

  • 详解python内置常用高阶函数(列出了5个常用的)

    高阶函数是在Python中一个非常有用的功能函数,所谓高阶函数就是一个函数可以用来接收另一个函数作为参数,这样的函数叫做高阶函数. python内置常用高阶函数: 一.函数式编程 •函数本身可以赋值给变量,赋值后变量为函数: •允许将函数本身作为参数传入另一个函数: •允许返回一个函数. 1.map()函数 是 Python 内置的高阶函数,它接收一个函数 f 和一个 list, 并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回 def add(x): ret

  • python中三种高阶函数(map,reduce,filter)详解

    map(function,seq[,seq2]) 接收至少两个参数,基本作用为将传入的函数依次作用到序列的每个元素,并且把结果作为新的序列 返回一个可迭代的map对象 function:函数对象 py2中可为None,作用等同于zip() 如: py3中不可为None,None是不可调用.不可迭代对象 seq:可迭代对象,可以传一个或多个 # 传一个: def func(i):return i*2 print([i for i in map(func,[1,'2'])]) # [2,'22']

  • Python常见内置高阶函数即高阶函数用法

    目录 1.什么是高阶函数? 2.高阶函数-map.filter.reduce 2.1map函数 2.2filter函数 2.3reduce函数 1.什么是高阶函数? 高阶函数:一个函数可以作为参数传给另外一个函数,或者一个函数的返回值为另外一个函数(若返回值为该函数本身,则为递归),满足其一则为高阶函数. 参数为函数: #参数为函数 def bar(): print("in the bar..") def foo(func): func() print("in the foo

  • React高阶组件使用教程详解

    目录 高阶组件(HOC) 概述 使用HOC解决横切关注点问题 不用改变原始组件使用组合 约定-将不相关的 props 传递给被包裹的组件 约定-最大化可组合性 约定-包装显示名称以便轻松调试 使用高阶组件的注意事项 高阶组件(HOC) 概述 是React复用组件逻辑的一种高级技巧,是一种基于React组合特性而形成的设计模式 高阶组件是参数为组件,返回值为新组件的函数 简单理解: 高阶组件本身是 函数,传参数是组件,返回值也是组件: 高阶组件不用关心数据是如何渲染的,只用关心逻辑即可 被包装的组

  • python里使用正则的findall函数的实例详解

    python里使用正则的findall函数的实例详解 在前面学习了正则的search()函数,这个函数可以找到一个匹配的字符串返回,但是想找到所有匹配的字符串返回,怎么办呢?其实得使用findall()函数.如下例子: #python 3. 6 #蔡军生 #http://blog.csdn.net/caimouse/article/details/51749579 # import re text = 'abbaaabbbbaaaaa' pattern = 'ab' for match in r

  • python使用numpy中的size()函数实例用法详解

    在python中,提到如何计算多维数组和矩阵,那一定会想到numpy.numpy定义了矩阵和数组,为它们提供了相关的运算.size中文解释为大家.尺寸的意思,如果想要统计矩阵元素个数,使用size()函数就可以解决. 1.Numpy size()函数 主要是用来统计矩阵元素个数,或矩阵某一维上的元素个数的函数. 2.使用语法 numpy.size(a, axis=None) 3.使用参数 a:输入的矩阵 axis:int型的可选参数,指定返回哪一维的元素个数.当没有指定时,返回整个矩阵的元素个数

随机推荐