python中scikit-learn机器代码实例

我们给大家带来了关于学习python中scikit-learn机器代码的相关具体实例,以下就是全部代码内容:

# -*- coding: utf-8 -*-

import numpy
from sklearn import metrics
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn import linear_model
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn import cross_validation
from sklearn import preprocessing
#import iris_data

def load_data():
  iris = load_iris()
  x, y = iris.data, iris.target
  x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
  return x_train,y_train,x_test,y_test

def train_clf3(train_data, train_tags):
  clf = LinearSVC(C=1100.0)#default with 'rbf'
  clf.fit(train_data,train_tags)
  return clf

def train_clf(train_data, train_tags):
  clf = MultinomialNB(alpha=0.01)
  print numpy.asarray(train_tags)
  clf.fit(train_data, numpy.asarray(train_tags))
  return clf

def evaluate(actual, pred):
  m_precision = metrics.precision_score(actual, pred)
  m_recall = metrics.recall_score(actual, pred)
  print 'precision:{0:.3f}'.format(m_precision)
  print 'recall:{0:0.3f}'.format(m_recall)
  print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred));

x_train,y_train,x_test,y_test = load_data()

clf = train_clf(x_train, y_train)

pred = clf.predict(x_test)
evaluate(numpy.asarray(y_test), pred)
print metrics.classification_report(y_test, pred)

使用自定义数据
# coding: utf-8

import numpy
from sklearn import metrics
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
import codecs
from sklearn.ensemble import RandomForestClassifier
from sklearn import cross_validation
from sklearn import linear_model

train_corpus = [
   '我们 我们 好孩子 认证 。 就是',
   '我们 好孩子 认证 。 中国',
   '我们 好孩子 认证 。 孤独',
   '我们 好孩子 认证 。',
 ]

test_corpus = [
   '我 菲律宾 韩国',
   '我们 好孩子 认证 。 中国',
 ]

def input_data(train_file, test_file):
  train_words = []
  train_tags = []
  test_words = []
  test_tags = []
  f1 = codecs.open(train_file,'r','utf-8','ignore')
  for line in f1:
    tks = line.split(':', 1)
    word_list = tks[1]
    word_array = word_list[1:(len(word_list)-3)].split(", ")
    train_words.append(" ".join(word_array))
    train_tags.append(tks[0])
  f2 = codecs.open(test_file,'r','utf-8','ignore')
  for line in f2:
    tks = line.split(':', 1)
    word_list = tks[1]
    word_array = word_list[1:(len(word_list)-3)].split(", ")
    test_words.append(" ".join(word_array))
    test_tags.append(tks[0])
  return train_words, train_tags, test_words, test_tags

def vectorize(train_words, test_words):
  #v = HashingVectorizer(n_features=25000, non_negative=True)
  v = HashingVectorizer(non_negative=True)
  #v = CountVectorizer(min_df=1)
  train_data = v.fit_transform(train_words)
  test_data = v.fit_transform(test_words)
  return train_data, test_data

def vectorize1(train_words, test_words):
  tv = TfidfVectorizer(sublinear_tf = False,use_idf=True);
  train_data = tv.fit_transform(train_words);
  tv2 = TfidfVectorizer(vocabulary = tv.vocabulary_);
  test_data = tv2.fit_transform(test_words);
  return train_data, test_data

def vectorize2(train_words, test_words):
  count_v1= CountVectorizer(stop_words = 'english', max_df = 0.5);
  counts_train = count_v1.fit_transform(train_words); 

  count_v2 = CountVectorizer(vocabulary=count_v1.vocabulary_);
  counts_test = count_v2.fit_transform(test_words);

  tfidftransformer = TfidfTransformer();

  train_data = tfidftransformer.fit(counts_train).transform(counts_train);
  test_data = tfidftransformer.fit(counts_test).transform(counts_test);
  return train_data, test_data

def evaluate(actual, pred):
  m_precision = metrics.precision_score(actual, pred)
  m_recall = metrics.recall_score(actual, pred)
  print 'precision:{0:.3f}'.format(m_precision)
  print 'recall:{0:0.3f}'.format(m_recall)
  print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred));

def train_clf(train_data, train_tags):
  clf = MultinomialNB(alpha=0.01)
  clf.fit(train_data, numpy.asarray(train_tags))
  return clf

def train_clf1(train_data, train_tags):
  #KNN Classifier
  clf = KNeighborsClassifier()#default with k=5
  clf.fit(train_data, numpy.asarray(train_tags))
  return clf

def train_clf2(train_data, train_tags):
  clf = linear_model.LogisticRegression(C=1e5)
  clf.fit(train_data,train_tags)
  return clf

def train_clf3(train_data, train_tags):
  clf = LinearSVC(C=1100.0)#default with 'rbf'
  clf.fit(train_data,train_tags)
  return clf

def train_clf4(train_data, train_tags):
  """
  随机森林,不可使用稀疏矩阵
  """
  clf = RandomForestClassifier(n_estimators=10)
  clf.fit(train_data.todense(),train_tags)
  return clf

#使用codecs逐行读取
def codecs_read_label_line(filename):
  label_list=[]
  f = codecs.open(filename,'r','utf-8','ignore')
  line = f.readline()
  while line:
    #label_list.append(line[0:len(line)-2])
    label_list.append(line[0:len(line)-1])
    line = f.readline()
  f.close()
  return label_list

def save_test_features(test_url, test_label):
  test_feature_list = codecs_read_label_line('test.dat')
  fw = open('test_labeded.dat',"w+")

  for (url,label) in zip(test_feature_list,test_label):
    fw.write(url+'\t'+label)
    fw.write('\n')
  fw.close()

def main():
  train_file = u'..\\file\\py_train.txt'
  test_file = u'..\\file\\py_test.txt'
  train_words, train_tags, test_words, test_tags = input_data(train_file, test_file)
  #print len(train_words), len(train_tags), len(test_words), len(test_words), 

  train_data, test_data = vectorize1(train_words, test_words)
  print type(train_data)
  print train_data.shape
  print test_data.shape
  print test_data[0].shape
  print numpy.asarray(test_data[0])

  clf = train_clf3(train_data, train_tags)

  scores = cross_validation.cross_val_score(
  clf, train_data, train_tags, cv=5, scoring="f1_weighted")
  print scores

  #predicted = cross_validation.cross_val_predict(clf, train_data,train_tags, cv=5)
  '''

  '''
  pred = clf.predict(test_data)
  error_list=[]
  for (true_tag,predict_tag) in zip(test_tags,pred):
    if true_tag != predict_tag:
      print true_tag,predict_tag
      error_list.append(true_tag+' '+predict_tag)
  print len(error_list)
  evaluate(numpy.asarray(test_tags), pred)
  '''
  #输出打标签结果
  test_feature_list = codecs_read_label_line('test.dat')
  save_test_features(test_feature_list, pred)
  '''

if __name__ == '__main__':
  main()
(0)

相关推荐

  • 纯python实现机器学习之kNN算法示例

    前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现.这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor). k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似). 原理 kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类. 具体讲,存在训练样本集, 每个

  • python机器学习之KNN分类算法

    本文为大家分享了python机器学习之KNN分类算法,供大家参考,具体内容如下 1.KNN分类算法 KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法. 他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本"距离"最近的前K个样本,然后看这K个样本大部分属于哪一类,那么就认为这个测试样本也属于哪一类.简单的说就是让最相似的K个样本来投票决定. 这里所说的距离,一

  • Python scikit-learn 做线性回归的示例代码

    一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所"熟知",就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出.当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘.随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持.改进和推广. 以最广泛的分类算法为例,大致可以分为线性和非线性两大派别.线性算法有著名的逻辑回归.朴素贝叶斯.最大熵等,

  • python机器学习实战之最近邻kNN分类器

    K近邻法是有监督学习方法,原理很简单,假设我们有一堆分好类的样本数据,分好类表示每个样本都一个对应的已知类标签,当来一个测试样本要我们判断它的类别是, 就分别计算到每个样本的距离,然后选取离测试样本最近的前K个样本的标签累计投票, 得票数最多的那个标签就为测试样本的标签. 源代码详解: #-*- coding:utf-8 -*- #!/usr/bin/python # 测试代码 约会数据分类 import KNN KNN.datingClassTest1() 标签为字符串 KNN.datingC

  • 基于Python和Scikit-Learn的机器学习探索

    你好,%用户名%! 我叫Alex,我在机器学习和网络图分析(主要是理论)有所涉猎.我同时在为一家俄罗斯移动运营商开发大数据产品.这是我第一次在网上写文章,不喜勿喷. 现在,很多人想开发高效的算法以及参加机器学习的竞赛.所以他们过来问我:"该如何开始?".一段时间以前,我在一个俄罗斯联邦政府的下属机构中领导了媒体和社交网络大数据分析工具的开发.我仍然有一些我团队使用过的文档,我乐意与你们分享.前提是读者已经有很好的数学和机器学习方面的知识(我的团队主要由MIPT(莫斯科物理与技术大学)和

  • Python机器学习库scikit-learn安装与基本使用教程

    本文实例讲述了Python机器学习库scikit-learn安装与基本使用.分享给大家供大家参考,具体如下: 引言 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数据挖掘和数据分析. scikit-learn安装 python 中安装许多模板库之前都有依赖关系,安装 scikit-learn 之前需要以下先决条件: Python(>= 2.6 or >= 3

  • Python机器学习之scikit-learn库中KNN算法的封装与使用方法

    本文实例讲述了Python机器学习之scikit-learn库中KNN算法的封装与使用方法.分享给大家供大家参考,具体如下: 1.工具准备,python环境,pycharm 2.在机器学习中,KNN是不需要训练过程的算法,也就是说,输入样例可以直接调用predict预测结果,训练数据集就是模型.当然这里必须将训练数据和训练标签进行拟合才能形成模型. 3.在pycharm中创建新的项目工程,并在项目下新建KNN.py文件. import numpy as np from math import s

  • 机器学习之KNN算法原理及Python实现方法详解

    本文实例讲述了机器学习之KNN算法原理及Python实现方法.分享给大家供大家参考,具体如下: 文中代码出自<机器学习实战>CH02,可参考本站: 机器学习实战 (Peter Harrington著) 中文版 机器学习实战 (Peter Harrington著) 英文原版 [附源代码] KNN算法介绍 KNN是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归.若K=1,新数据被简单分配给其近邻的类. KNN算法

  • python的scikit-learn将特征转成one-hot特征的方法

    如下所示: enc = OneHotEncoder(categorical_features=np.array([0,1,2]),n_values=[5,4,2]) enc.fit(train_data) train_data = enc.transform(train_data).toarray() test_data = enc.transform(test_data).toarray() 以上这篇python的scikit-learn将特征转成one-hot特征的方法就是小编分享给大家的全

  • Python 中迭代器与生成器实例详解

    Python 中迭代器与生成器实例详解 本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下: 1.手动遍历迭代器 应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环 解决方案:使用next()函数,并捕获StopIteration异常 def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: br

  • Python中动态创建类实例的方法

    简介 在Java中我们可以通过反射来根据类名创建类实例,那么在Python我们怎么实现类似功能呢? 其实在Python有一个builtin函数import,我们可以使用这个函数来在运行时动态加载一些模块.如下: def createInstance(module_name, class_name, *args, **kwargs): module_meta = __import__(module_name, globals(), locals(), [class_name]) class_met

  • Python中实现switch功能实例解析

    前言 今天在学习python的过程中,发现python没有switch这个语法.于是就想在python中如何才能实现这个功能呢? 正文 本文中我们对switch的使用模拟为正常的数据库的增删改查操作的对应,如'select 对应'select action'等. 1.简单的if-else 正如我们所知,python中有if语句,而且当时学习C的时候,学到if-else时引出的的替代品就是switch,两者可以完美的互相替代,需要注意的是在python中else if简化成了elif.如下所示:

  • Python中的默认参数实例分析

    本文研究的主要是Python中的默认参数的相关内容,具体如下. 熟悉C++语言的可以知道,C++语言中的默认参数是写在函数声明中的,为语法糖,与函数的调用无关,是在函数调用的时候由编译器补齐参数然后进行调用. 而Python中的默认参数与其有相当大的不一样,如下例中的代码执行结果会是什么呢? def test_parameter(a, dfp=[]): dfp.append(a) print(dfp) test_parameter(1) test_parameter(2) test_parame

  • Python 中的Selenium异常处理实例代码

    自动化测试执行过程中,难免会有错误/异常出现,比如测试脚本没有发现对应元素,则会立刻抛出NoSuchElementException异常.这时不要怕,肯定是测试脚本或者测试环境哪里出错了!那如何处理才是关键?因为一般只是局部有问题,为了让脚本继续执行,so我们可以用try...except...raise捕获异常.该捕获异常后可以打印出相应的异常原因,这样以便于分析异常原因. 下面将举例说明,当异常抛出后将信息打印在控制台,同时截取当前浏览器窗口,作为后续bug的依据给相应开发人员更好下定位问题

  • python中的decimal类型转换实例详解

    [Python标准库]decimal--定点数和浮点数的数学运算 作用:使用定点数和浮点数的小数运算.         Python 版本:2.4 及以后版本 decimal 模块实现了定点和浮点算术运算符,使用的是大多数人所熟悉的模型,而不是程序员熟悉的模型,即大多数计算机硬件实现的 IEEE 浮点数运算.Decimal 实例可以准确地表示任何数,对其上取整或下取整,还可以对有效数字个数加以限制. Decimal 小数值表示为 Decimal 类的实例.构造函数取一个整数或字符串作为参数.使用

  • Python中变量的输入输出实例代码详解

    1.变量的输入: input函数: input() input("请输入银行卡密码") password = input("请输入银行卡密码") 变量名 = input("XXX") # 用输入函数给变量赋值 输入函数给变量赋值举例: 注:所有input()得到的数据类型都是str字符串类型 2.变量类型的转换函数: • int(x) # str转整数 • float(x) # str转小数 转换举例: 3.输入综合练习: # 1.输入苹果的单价

  • Python中的Django基本命令实例详解

    一.新建项目 $django-admin.py  startproject  project_name # 特别是在 windows 上,如果报错,尝试用 django-admin 代替 django-admin.py 试试 注意 project_name 是自己的项目名称,需要为合法的 Python 包名,如不能为 1a 或 a-b. 二.新建APP 要先进入项目目录下,cd project_name 然后执行下面的命令: $ python manage.py startapp app_nam

  • Python中logging日志库实例详解

    logging的简单使用 用作记录日志,默认分为六种日志级别(括号为级别对应的数值) NOTSET(0) DEBUG(10) INFO(20) WARNING(30) ERROR(40) CRITICAL(50) special 在自定义日志级别时注意不要和默认的日志级别数值相同 logging 执行时输出大于等于设置的日志级别的日志信息,如设置日志级别是 INFO,则 INFO.WARNING.ERROR.CRITICAL 级别的日志都会输出. |2logging常见对象 Logger:日志,

  • python中altair可视化库实例用法

    作为六大python可视化库,基本上学会都是可以通吃任何领域的存在,本章要给大家介绍的Altair就是其中之一的可视化库,能够将数据转化为非常直观的图片,让我们更加清晰的认知数据之前直观的联系,俨然已经成为可视化库中的新星,好啦,下面就让我们详细了解下这个荣获众多粉丝的可视化库的使用技巧吧. 安装Altair: 依赖JupyterLab $ pip install -U altair vega_datasets jupyterlab 导入Altair: import altair as alt

随机推荐