Python3.5模块的定义、导入、优化操作图文详解

本文实例讲述了Python3.5模块的定义、导入、优化操作。分享给大家供大家参考,具体如下:

1、模块体系大纲

2、模块的定义

模块的本质:是一个.py格式的Python文件。文件名test.py,对应的模块名为:test。

用来从逻辑上组织Python代码(变量、函数、类、逻辑),实现一个功能。

3、模块的导入方法

举例:

(1)当导入的模块中有多个方法和多个变量时,导入模块的所有变量与方法,举例如下:

(2)两种模块的导入方法的使用比较:

仅仅导入模块,调用的方式是:模块.方法

导入模块的所有方法和变量:直接调用(不建议使用这样的方法)

原因:在调用文件中存在与被导入模块中一样的方法,则模块中的方法不会被调用,会被调用文件中的相同的方法覆盖。

(3)导入模块的具体某一个方法

(4)在调用文件中存在与被调用模块中一样的方法时,用as方法将被导入模块中的方法重命名。

4、模块的制作

5、模块import的本质

导入模块的本质:就是把Python文件解释一遍。

(1)将代码解释一遍,所有代码赋值给模块变量名。调用:模块变量名.变量/方法。

(2)只解释模块的部分方法或变量,可直接使用该方法或变量,不需要模块名。

6、包

(1)包package的定义:本质就是一个目录(文件夹),必须带有一个__init__.py文件,用来从逻辑上组织模块的。

(2)包的导入——其本质是:解释这个包下面的__init__.py文件。

7、(1)在不同级的目录下导入模块

module1.py文件在day5目录下,而main1.py在day5/module_test目录下面,这两个文件不在同一个目录下面,此时,main.py文件想要调用module1模块的步骤如下:

由sys.path定义的路径可知,导入的模块先从当前的路径中去寻找模块,没有该模块的情况下,给sys.path添加同时包含module1模块和main1.py的路径,F:\PythonCode\day5

举例:

(2)在不同级的目录下导入包:p_test.py文件调用包package_test下面的test,py文件里面的test()方法

8、导入优化

from module_test import test

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python文件与目录操作技巧汇总》、《Python文本文件操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python3.5内置模块之os模块、sys模块、shutil模块用法实例分析

    本文实例讲述了Python3.5内置模块之os模块.sys模块.shutil模块用法.分享给大家供大家参考,具体如下: 1.os模块:提供对操作系统进行调用的接口 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import os print(os.getcwd()) #获取当前的操作目录,即当前Python脚本工作的目录路径 #os.chdir("F:\\PythonCode\\day5\\test&quo

  • Python3.5内置模块之random模块用法实例分析

    本文实例讲述了Python3.5内置模块之random模块用法.分享给大家供大家参考,具体如下: 1.random模块基础的方法 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import random print(random.random()) #随机产生[0,1)之间的浮点值 print(random.randint(1,6)) #随机生成指定范围[a,b]的整数 print(random.randr

  • python模块导入的细节详解

    python模块导入细节 本文主要介绍了关于python模块导入的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧 官方手册:https://docs.python.org/3/tutorial/modules.html 可执行文件和模块 python源代码文件按照功能可以分为两种类型: 用于执行的可执行程序文件 不用与执行,仅用于被其它python源码文件导入的模块文件 例如文件a.py和b.py在同一目录下,它们的内容分别是: # b.py x="var x in m

  • Python3.5 Pandas模块之Series用法实例分析

    本文实例讲述了Python3.5 Pandas模块之Series用法.分享给大家供大家参考,具体如下: 1.Pandas模块引入与基本数据结构 2.Series的创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu #模块引入 import numpy as np import pandas as pd from pandas import Series,DataFrame #1.Series通过numpy一

  • Python下使用Psyco模块优化运行速度

    今天介绍下Psyco模块,Psyco模块可以使你的Python程序运行的像C语言一样快. 都说Python语言易用易学,但性能上跟一些编译语言(如C语言)比较要差不少,这里可以用C语言和Python语言各编写斐波纳契数列计算程序,并计算运行时间: C语言程序 复制代码 代码如下: int fib(int n){    if (n < 2)      return n;    else      return fib(n - 1) + fib(n - 2); }   int main() {   

  • python导入模块交叉引用的方法

    实际项目中遇到python模块相互引用问题,查资料,终于算是弄明白了. 首先交叉引用或是相互引用,实际上就是导入循环,关于导入循环的详细说明,可见我摘自<python核心编程>第二版的摘抄:Python导入循环方法. 附录给了一种解决交叉引用的方法,试了,不行,但关于交叉引用问题本身说明的很清楚,如果不清楚什么是交叉引用,可看附录一. 循环引用在python圈关注的并不多,语言上没有提供防止循环依赖的机制. 总的来说,应该在总体结构上避免模块之间互相依赖,即:A依赖B,B就不要依赖A,这也是代

  • Python3.5内置模块之shelve模块、xml模块、configparser模块、hashlib、hmac模块用法分析

    本文实例讲述了Python3.5内置模块之shelve模块.xml模块.configparser模块.hashlib.hmac模块用法.分享给大家供大家参考,具体如下: 1.shelve模块 shelve类似于一个key-value数据库,可以很方便的用来保存Python的内存对象,其内部使用pickle来序列化数据, 简单来说,使用者可以将一个列表.字典.或者用户自定义的类实例保存到shelve中,下次需要用的时候直接取出来, 就是一个Python内存对象,不需要像传统数据库一样,先取出数据,

  • Python3.5 Pandas模块缺失值处理和层次索引实例详解

    本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引.分享给大家供大家参考,具体如下: 1.pandas缺失值处理 import numpy as np import pandas as pd from pandas import Series,DataFrame df3 = DataFrame([ ["Tom",np.nan,456.67,"M"], ["Merry",34,345.56,np.nan], [np.nan,np

  • Python3.5 Pandas模块之DataFrame用法实例分析

    本文实例讲述了Python3.5 Pandas模块之DataFrame用法.分享给大家供大家参考,具体如下: 1.DataFrame的创建 (1)通过二维数组方式创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import numpy as np import pandas as pd from pandas import Series,DataFrame #1.DataFrame通过二维数组创建 pr

  • Python3.5内置模块之time与datetime模块用法实例分析

    本文实例讲述了Python3.5内置模块之time与datetime模块用法.分享给大家供大家参考,具体如下: 1.模块的分类 a.标准库(Python自带):sys.os模块 b.开源模块(第三方模块) c.自定义模块 2.内建模块--time (1)在Python中通常用以下几种方式来表示时间: a.时间戳:从1970年1月1日开始到当下的时间的秒数,导入time模块(import time),调用time.time()方法即可. b.格式化的时间字符串. c.元组(struct_time)

  • Python3.5基础之NumPy模块的使用图文与实例详解

    本文实例讲述了Python3.5基础之NumPy模块的使用.分享给大家供大家参考,具体如下: 1.简介 2.多维数组--ndarray #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import numpy as np #1.创建ndarray #创建一维数组 n1 = np.array([1,2,3,4]) print(n1) #属性--ndim:维度;dtype:元素类型;shape:数组形状; # s

随机推荐