在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

最近在工作中,遇到了数据合并、连接的问题,故整理如下,供需要者参考~

一、concat:沿着一条轴,将多个对象堆叠到一起

concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接。与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果。

concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
    keys=None, levels=None, names=None, verify_integrity=False, copy=True): 

pd.concat()只是单纯的把两个表拼接在一起,参数axis是关键,它用于指定是行还是列,axis默认是0。

当axis=0时,pd.concat([obj1, obj2])的效果与obj1.append(obj2)是相同的;当axis=1时,pd.concat([obj1, obj2], axis=1)的效果与pd.merge(obj1, obj2, left_index=True, right_index=True, how='outer')是相同的。

merge方法的介绍请参看下文。

参数介绍:

objs:需要连接的对象集合,一般是列表或字典;

axis:连接轴向;

join:参数为‘outer'或‘inner';

join_axes=[]:指定自定义的索引;

keys=[]:创建层次化索引;

ignore_index=True:重建索引

举例:

df1=DataFrame(np.random.randn(3,4),columns=['a','b','c','d']) 

df2=DataFrame(np.random.randn(2,3),columns=['b','d','a']) 

pd.concat([df1,df2]) 

     a     b     c     d
0 -0.848557 -1.163877 -0.306148 -1.163944
1 1.358759 1.159369 -0.532110 2.183934
2 0.532117 0.788350 0.703752 -2.620643
0 -0.316156 -0.707832    NaN -0.416589
1 0.406830 1.345932    NaN -1.874817 

pd.concat([df1,df2],ignore_index=True) 

     a     b     c     d
0 -0.848557 -1.163877 -0.306148 -1.163944
1 1.358759 1.159369 -0.532110 2.183934
2 0.532117 0.788350 0.703752 -2.620643
3 -0.316156 -0.707832    NaN -0.416589
4 0.406830 1.345932    NaN -1.874817

二、merge:通过键拼接列

类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来。该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面。

merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', '_y'), copy=True, indicator=False)

参数介绍:

left和right:两个不同的DataFrame;

how:连接方式,有inner、left、right、outer,默认为inner;

on:指的是用于连接的列索引名称,必须存在于左右两个DataFrame中,如果没有指定且其他参数也没有指定,则以两个DataFrame列名交集作为连接键;

left_on:左侧DataFrame中用于连接键的列名,这个参数左右列名不同但代表的含义相同时非常的有用;

right_on:右侧DataFrame中用于连接键的列名;

left_index:使用左侧DataFrame中的行索引作为连接键;

right_index:使用右侧DataFrame中的行索引作为连接键;

sort:默认为True,将合并的数据进行排序,设置为False可以提高性能;

suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为('_x', '_y');

copy:默认为True,总是将数据复制到数据结构中,设置为False可以提高性能;

indicator:显示合并数据中数据的来源情况

举例:

# 1.默认以重叠的列名当做连接键。
df1=DataFrame({'key':['a','b','b'],'data1':range(3)})
df2=DataFrame({'key':['a','b','c'],'data2':range(3)})
pd.merge(df1,df2)  #没有指定连接键,默认用重叠列名,没有指定连接方式 

  data1 key data2
0   0  a   0
1   1  b   1
2   2  b   1 

# 2.默认做inner连接(取key的交集),连接方式还有(left,right,outer),制定连接方式加参数:how=''
pd.merge(df2,df1) 

  data2 key data1
0   0  a   0
1   1  b   1
2   1  b   2          #默认内连接,可以看见c没有连接上。 

pd.merge(df2,df1,how='left')  #通过how,指定连接方式 

  data2 key data1
0   0  a   0
1   1  b   1
2   1  b   2
3   2  c  NaN 

# 3.多键连接时将连接键组成列表传入,例:pd.merge(df1,df2,on=['key1','key2']
right=DataFrame({'key1':['foo','foo','bar','bar'],
     'key2':['one','one','one','two'],
     'lval':[4,5,6,7]})
left=DataFrame({'key1':['foo','foo','bar'],
     'key2':['one','two','one'],
     'lval':[1,2,3]})
right=DataFrame({'key1':['foo','foo','bar','bar'],
     'key2':['one','one','one','two'],
     'lval':[4,5,6,7]})
pd.merge(left,right,on=['key1','key2'],how='outer') #传出数组 

 key1 key2 lval_x lval_y
0 foo one    1    4
1 foo one    1    5
2 foo two    2   NaN
3 bar one    3    6
4 bar two   NaN    7 

# 4.如果两个对象的列名不同,可以分别指定,例:pd.merge(df1,df2,left_on='lkey',right_on='rkey')
df3=DataFrame({'key3':['foo','foo','bar','bar'], #将上面的right的key 改了名字
     'key4':['one','one','one','two'],
     'lval':[4,5,6,7]})
pd.merge(left,df3,left_on='key1',right_on='key3') #键名不同的连接 

 key1 key2 lval_x key3 key4 lval_y
0 foo one    1 foo one    4
1 foo one    1 foo one    5
2 foo two    2 foo one    4
3 foo two    2 foo one    5
4 bar one    3 bar one    6
5 bar one    3 bar two    7

三、join:主要用于索引上的合并

join(self, other, on=None, how='left', lsuffix='', rsuffix='',sort=False):

其参数的意义与merge方法中的参数意义基本一样。

以上这篇在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pandas 合并多个Dataframe(merge,concat)的方法

    在数据处理的时候,尤其在搞大数据竞赛的时候经常会遇到一个问题就是,多个表单的合并问题,比如一个表单有user_id和age这两个字段,另一个表单有user_id和sex这两个字段,要把这两个表合并成只有user_id.age.sex三个字段的表怎么办的,普通的拼接是做不到的,因为user_id每一行之间不是对应的,像拼积木似的横向拼接肯定是不行的. pandas中有个merge函数可以做到这个实用的功能,merge这个词会点SQL语言的应该都不陌生. 下面说说merge函数怎么用: df = p

  • 详解pandas数据合并与重塑(pd.concat篇)

    1 concat concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False) 参数说明 objs: series,dataframe或者是panel构成的序列lsit axis: 需要合并链接的轴,0是行,1是列

  • pandas dataframe的合并实现(append, merge, concat)

    创建2个DataFrame: >>> df1 = pd.DataFrame(np.ones((4, 4))*1, columns=list('DCBA'), index=list('4321')) >>> df2 = pd.DataFrame(np.ones((4, 4))*2, columns=list('FEDC'), index=list('6543')) >>> df3 = pd.DataFrame(np.ones((4, 4))*3, col

  • pandas的连接函数concat()函数的具体使用方法

    concat()函数的具体用法 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True) 参数含义 objs:Series,DataFrame或Panel对象的序列或映射.如果传递了dict,则排序的键将用作键参数,除非它被传递,在这种情况下,将选择值(见下文).任何

  • 在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

    最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind

  • pandas中DataFrame数据合并连接(merge、join、concat)

    pandas作者Wes McKinney 在[PYTHON FOR DATA ANALYSIS]中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程中,我发现书中的内容还只是冰山一角.谈到pandas数据的行更新.表合并等操作,一般用到的方法有concat.join.merge.但这三种方法对于很多新手来说,都不太好分清使用的场合与用途.今天就pandas官网中关于数据合并和重述的章节做个使用方法的总结. 文中代码块主要有pandas官网教程提供. 1 concat co

  • python中DataFrame数据合并merge()和concat()方法详解

    目录 merge() 1.常规合并 ①方法1 ②方法2 重要参数 合并方式 left right outer inner 2.多对一合并 3.多对多合并 concat() 1.相同字段的表首位相连 2.横向表合并(行对齐) 3.交叉合并 总结 merge() 1.常规合并 ①方法1 指定一个参照列,以该列为准,合并其他列. import pandas as pd df1 = pd.DataFrame({'id': ['001', '002', '003'], 'num1': [120, 101,

  • Pandas中DataFrame数据删除详情

    目录 1.根据默认的行列索引操作 1.1行删除 1.2列删除 2.根据自定义的行列索引操作 2.1行删除 2.2列删除 本文介绍Pandas中DataFrame数据删除,主要使用drop.del方式. # drop函数的参数解释 drop( self, labels=None, # 就是要删除的行列的标签,用列表给定; axis=0, # axis是指处哪一个轴,0为行(默认),1为列; index=None, # index是指某一行或者多行 columns=None, # columns是指

  • DataFrame 数据合并实现(merge,join,concat)

    merge merge 函数通过一个或多个键将数据集的行连接起来. 场景:针对同一个主键存在的两张包含不同特征的表,通过主键的链接,将两张表进行合并.合并之后,两张表的行数不增加,列数是两张表的列数之和. def merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), c

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • Pandas实现Dataframe的合并

    目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析.本文将会详细讲解如何使用Pandas来合并Series和Dataframe. 使用concat concat是最常用的合并DF的方法,先看下concat的定义: pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None,

  • Python数据合并的concat函数与merge函数详解

    目录 一.concat函数 1)横向堆叠与外连接 2) 纵向堆叠与内链接 二.merge()函数 1)根据行索引合并数据 2)合并重叠数据 一.concat函数 1.concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, verify_integrity=Fals

  • numpy和pandas中数组的合并、拉直和重塑实例

    合并 在numpy中合并两个array numpy中可以通过concatenate,参数axis=0表示在垂直方向上合并两个数组,等价于np.vstack:参数axis=1表示在水平方向上合并两个数组,等价于np.hstack. 垂直方向: np.concatenate([arr1,arr2],axis=0) np.vstack([arr1,arr2]) 水平方向: np.concatenate([arr1,arr2],axis=1) np.hstack([arr1,arr2]) import

  • 对numpy和pandas中数组的合并和拆分详解

    合并 numpy中 numpy中可以通过concatenate,指定参数axis=0 或者 axis=1,在纵轴和横轴上合并两个数组. import numpy as np import pandas as pd arr1=np.ones((3,5)) arr1 Out[5]: array([[ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.]]) arr2=np.random.randn(15).reshape(

随机推荐