python线程池threadpool实现篇

本文为大家分享了threadpool线程池中所有的操作,供大家参考,具体内容如下

首先介绍一下自己使用到的名词:

工作线程(worker):创建线程池时,按照指定的线程数量,创建工作线程,等待从任务队列中get任务;

任务(requests):即工作线程处理的任务,任务可能成千上万个,但是工作线程只有少数。任务通过          makeRequests来创建

任务队列(request_queue):存放任务的队列,使用了queue实现的。工作线程从任务队列中get任务进行处理;

任务处理函数(callable):工作线程get到任务后,通过调用任务的任务处理函数即(request.callable_)具体     的     处理任务,并返回处理结果;

任务结果队列(result_queue):任务处理完成后,将返回的处理结果,放入到任务结果队列中(包括异常);

任务异常处理函数或回调(exc_callback):从任务结果队列中get结果,如果设置了异常,则需要调用异常回调处理异常;

任务结果回调(callback):从任务结果队列中get结果,对result进行进一步处理;

上一节介绍了线程池threadpool的安装和使用,本节将主要介绍线程池工作的主要流程:

(1)线程池的创建
(2)工作线程的启动
(3)任务的创建
(4)任务的推送到线程池
(5)线程处理任务
(6)任务结束处理
(7)工作线程的退出

下面是threadpool的定义:

class ThreadPool:
 """A thread pool, distributing work requests and collecting results. 

 See the module docstring for more information. 

 """
 def __init__(self, num_workers, q_size=0, resq_size=0, poll_timeout=5):
  pass
 def createWorkers(self, num_workers, poll_timeout=5):
  pass
 def dismissWorkers(self, num_workers, do_join=False):
  pass
 def joinAllDismissedWorkers(self):
  pass
 def putRequest(self, request, block=True, timeout=None):
  pass
 def poll(self, block=False):
  pass
 def wait(self):
  pass

1、线程池的创建(ThreadPool(args))

task_pool=threadpool.ThreadPool(num_works)

task_pool=threadpool.ThreadPool(num_works)
 def __init__(self, num_workers, q_size=0, resq_size=0, poll_timeout=5):
  """Set up the thread pool and start num_workers worker threads. 

  ``num_workers`` is the number of worker threads to start initially. 

  If ``q_size > 0`` the size of the work *request queue* is limited and
  the thread pool blocks when the queue is full and it tries to put
  more work requests in it (see ``putRequest`` method), unless you also
  use a positive ``timeout`` value for ``putRequest``. 

  If ``resq_size > 0`` the size of the *results queue* is limited and the
  worker threads will block when the queue is full and they try to put
  new results in it. 

  .. warning:
   If you set both ``q_size`` and ``resq_size`` to ``!= 0`` there is
   the possibilty of a deadlock, when the results queue is not pulled
   regularly and too many jobs are put in the work requests queue.
   To prevent this, always set ``timeout > 0`` when calling
   ``ThreadPool.putRequest()`` and catch ``Queue.Full`` exceptions. 

  """
  self._requests_queue = Queue.Queue(q_size)#任务队列,通过threadpool.makeReuests(args)创建的任务都会放到此队列中
  self._results_queue = Queue.Queue(resq_size)#字典,任务对应的任务执行结果</span>
  self.workers = []#工作线程list,通过self.createWorkers()函数内创建的工作线程会放到此工作线程list中
  self.dismissedWorkers = []#被设置线程事件并且没有被join的工作线程
  self.workRequests = {}#字典,记录任务被分配到哪个工作线程中</span>
  self.createWorkers(num_workers, poll_timeout)

其中,初始化参数为:

num_works:   线程池中线程个数
q_size :   任务队列的长度限制,如果限制了队列的长度,那么当调用putRequest()添加任务时,到达限制长度后,那么putRequest将会不断尝试添加任务,除非在putRequest()设置了超时或者阻塞; 
esq_size:  任务结果队列的长度;
pool_timeout:  工作线程如果从request队列中,读取不到request,则会阻塞pool_timeout,如果仍没request则直接返回;

其中,成员变量:

self._requests_queue:  任务队列,通过threadpool.makeReuests(args)创建的任务都会放到此队列中;
self._results_queue:  字典,任务对应的任务执行 
self.workers:  工作线程list,通过self.createWorkers()函数内创建的工作线程会放到此工作线程list中;
self.dismisssedWorkers:  被设置线程事件,并且没有被join的工作线程
self.workRequests:  字典,记录推送到线程池的任务,结构为requestID:request。其中requestID是任务的唯一标识,会在后面作介绍。

2、工作线程的启动(self.createWorks(args))

函数定义:

def createWorkers(self, num_workers, poll_timeout=5):
  """Add num_workers worker threads to the pool. 

  ``poll_timout`` sets the interval in seconds (int or float) for how
  ofte threads should check whether they are dismissed, while waiting for
  requests. 

  """
  for i in range(num_workers):
   self.workers.append(WorkerThread(self._requests_queue,
    self._results_queue, poll_timeout=poll_timeout))

其中WorkerThread()继承自thread,即python内置的线程类,将创建的WorkerThread对象放入到self.workers队列中。下面看一下WorkerThread类的定义:
从self.__init__(args)可看出:

class WorkerThread(threading.Thread):
 """Background thread connected to the requests/results queues. 

 A worker thread sits in the background and picks up work requests from
 one queue and puts the results in another until it is dismissed. 

 """ 

 def __init__(self, requests_queue, results_queue, poll_timeout=5, **kwds):
  """Set up thread in daemonic mode and start it immediatedly. 

  ``requests_queue`` and ``results_queue`` are instances of
  ``Queue.Queue`` passed by the ``ThreadPool`` class when it creates a
  new worker thread. 

  """
  threading.Thread.__init__(self, **kwds)
  self.setDaemon(1)#
  self._requests_queue = requests_queue#任务队列
  self._results_queue = results_queue#任务结果队列
  self._poll_timeout = poll_timeout#run函数中从任务队列中get任务时的超时时间,如果超时则继续while(true);
  self._dismissed = threading.Event()#线程事件,如果set线程事件则run会执行break,直接退出工作线程;
  self.start() 

 def run(self):
  """Repeatedly process the job queue until told to exit."""
  while True:
   if self._dismissed.isSet():#如果设置了self._dismissed则退出工作线程 

    # we are dismissed, break out of loop
    break
   # get next work request. If we don't get a new request from the
   # queue after self._poll_timout seconds, we jump to the start of
   # the while loop again, to give the thread a chance to exit.
   try:
    request = self._requests_queue.get(True, self._poll_timeout)
   except Queue.Empty:#尝从任务 队列self._requests_queue 中get任务,如果队列为空,则continue
    continue
   else:
    if self._dismissed.isSet():#检测此工作线程事件是否被set,如果被设置,意味着要结束此工作线程,那么就需要将取到的任务返回到任务队列中,并且退出线程
     # we are dismissed, put back request in queue and exit loop
     self._requests_queue.put(request)
     break
    try:<span style="color:#如果线程事件没有被设置,那么执行任务处理函数request.callable,并将返回的result,压入到任务结果队列中
     result = request.callable(*request.args, **request.kwds)
     self._results_queue.put((request, result))
    except:
     request.exception = True
     self._results_queue.put((request, sys.exc_info()))#如果任务处理函数出现异常,则将异常压入到队列中 

 def dismiss(self):</span>
  """Sets a flag to tell the thread to exit when done with current job.
  """
  self._dismissed.set()

初始化中变量:

self._request_queue:任务队列;
self._resutls_queuqe,:任务结果队列 ;
self._pool_timeout:run函数中从任务队列中get任务时的超时时间,如果超时则继续while(true);
self._dismissed:线程事件,如果set线程事件则run会执行break,直接退出工作线程;

最后调用self.start()启动线程,run函数定义见上面:

从上面run函数while执行步骤如下:
(1)如果设置了self._dismissed则退出工作线程,否则执行第2步
(2)尝从任务 队列self._requests_queue 中get任务,如果队列为空,则continue 执行下一次while循环,否则执行第3步
(3)检测此工作线程事件是否被set,如果被设置,意味着要结束此工作线程,那么就需要将取到的任务返回到任务队列中,并且退出线程。如果线程事件没有被设置,那么执行任务处理函数request.callable,并将返回的result,压入到任务结果队列中,如果任务处理函数出现异常,则将异常压入到队列中。最后跳转第4步
(4)继续循环,返回1

到此工作线程创建完毕,根据设置的线程池线程数量,创建工作线程,工作线程从任务队列中get任务,进行任务处理,并将任务处理结果压入到任务结果队列中。

3、任务的创建(makeRequests)

任务的创建函数为threadpool.makeRequests(callable_,args_list,callback=None):

# utility functions
def makeRequests(callable_, args_list, callback=None,
  exc_callback=_handle_thread_exception):
 """Create several work requests for same callable with different arguments. 

 Convenience function for creating several work requests for the same
 callable where each invocation of the callable receives different values
 for its arguments. 

 ``args_list`` contains the parameters for each invocation of callable.
 Each item in ``args_list`` should be either a 2-item tuple of the list of
 positional arguments and a dictionary of keyword arguments or a single,
 non-tuple argument. 

 See docstring for ``WorkRequest`` for info on ``callback`` and
 ``exc_callback``. 

 """
 requests = []
 for item in args_list:
  if isinstance(item, tuple):
   requests.append(
    WorkRequest(callable_, item[0], item[1], callback=callback,
     exc_callback=exc_callback)
   )
  else:
   requests.append(
    WorkRequest(callable_, [item], None, callback=callback,
     exc_callback=exc_callback)
   )
 return requests

其中创建任务的函数参数具体意义为下:

callable_:注册的任务处理函数,当任务被放到任务队列后,工作线程中获取到该任务的线程,会执行此 callable_

args_list:首先args_list是列表,列表元素类型为元组,元组中有两个元素item[0],item[1],item[0]为位置参 数,item[1]为字典类型关键字参数。列表中元组的个数,代表启动的任务个数,在使用的时候一般都为单个元组,即一个makerequest()创建一个任务。

callback:回调函数,在poll函数中调用(后面讲解此函数),callable_调用结束后,会就任务结果放入到任务结果队列中(self._resutls_queue),在poll函数中,当从self._resutls_queue队列中get某个结果后,会执行此callback(request,result),其中result是request任务返回的结果。

exc_callback:异常回调函数,在poll函数中,如果某个request对应有执行异常,那么会调用此异常回调。

创建完成任务后,返回创建的任务。

外层记录此任务,放入到任务列表中。

上面是创建任务的函数,下面讲解任务对象的结构:

class WorkRequest:
 """A request to execute a callable for putting in the request queue later. 

 See the module function ``makeRequests`` for the common case
 where you want to build several ``WorkRequest`` objects for the same
 callable but with different arguments for each call. 

 """ 

 def __init__(self, callable_, args=None, kwds=None, requestID=None,
   callback=None, exc_callback=_handle_thread_exception):
  """Create a work request for a callable and attach callbacks. 

  A work request consists of the a callable to be executed by a
  worker thread, a list of positional arguments, a dictionary
  of keyword arguments. 

  A ``callback`` function can be specified, that is called when the
  results of the request are picked up from the result queue. It must
  accept two anonymous arguments, the ``WorkRequest`` object and the
  results of the callable, in that order. If you want to pass additional
  information to the callback, just stick it on the request object. 

  You can also give custom callback for when an exception occurs with
  the ``exc_callback`` keyword parameter. It should also accept two
  anonymous arguments, the ``WorkRequest`` and a tuple with the exception
  details as returned by ``sys.exc_info()``. The default implementation
  of this callback just prints the exception info via
  ``traceback.print_exception``. If you want no exception handler
  callback, just pass in ``None``. 

  ``requestID``, if given, must be hashable since it is used by
  ``ThreadPool`` object to store the results of that work request in a
  dictionary. It defaults to the return value of ``id(self)``. 

  """
  if requestID is None:
   self.requestID = id(self)
  else:
   try:
    self.requestID = hash(requestID)
   except TypeError:
    raise TypeError("requestID must be hashable.")
  self.exception = False
  self.callback = callback
  self.exc_callback = exc_callback
  self.callable = callable_
  self.args = args or []
  self.kwds = kwds or {} 

 def __str__(self):
  return "<WorkRequest id=%s args=%r kwargs=%r exception=%s>" % \
   (self.requestID, self.args, self.kwds, self.exception)

上面self.callback 以及self.exc_callback,和self.callable_ ,args,dwds都已经讲解,就不在啰嗦了。
其中有一个任务的全局唯一标识,即self.requestID,通过获取自身内存首地址作为自己的唯一标识id(self)
self.exception 初始化为False,如果执行self.callable()过程中出现异常,那么此变量会标设置为True。

至此,任务创建完毕,调用makeRequests()的上层记录有任务列表request_list.

4、任务的推送到线程池(putRequest)

上面小节中介绍了任务的创建,任务的个数可以成千上百,但是处理任务的线程数量只有我们在创建线程池的时候制定的线程数量来处理,指定的线程数量往往比任务的数量小得多,因此,每个线程必须处理多个任务。

本节介绍如何将创建的任务推送的线程池中,以让线程池由阻塞状态,获取任务,然后去处理任务。
任务的推送使用ThreadPool线程池类中的putRequest(self,request,block,timeout)来创建:

def putRequest(self, request, block=True, timeout=None):
 """Put work request into work queue and save its id for later."""
 assert isinstance(request, WorkRequest)
 # don't reuse old work requests
 assert not getattr(request, 'exception', None)
 self._requests_queue.put(request, block, timeout)
 self.workRequests[request.requestID] = request

函数的主要作用就是将request任务,也就是上一小节中创建的任务,put到线程池的任务队列中(self._request_queue)。然后记录已经推送到线程池的任务,通过线程池的self.workReuests 字典来存储,结构为request.requestID:request。

至此,任务创建完成,并且已经将任务推送到线程池中。

5、线程处理任务

通过上一小节,任务已经推送到了线程中。在任务没有被推送到线程池中时,线程池中的线程都处在处在阻塞状态中,即在线程的self.run()函数中,一直处于一下状态:

try:
 request = self._requests_queue.get(True, self._poll_timeout)
except Queue.Empty:#尝从任务 队列self._requests_queue 中get任务,如果队列为空,则continue
 continue

现在任务已经推送到线程池中,那么get任务将会正常返回,会执行下面的步骤:

def run(self):
  """Repeatedly process the job queue until told to exit."""
  while True:
   if self._dismissed.isSet():#如果设置了self._dismissed则退出工作线程 

    # we are dismissed, break out of loop
    break
   # get next work request. If we don't get a new request from the
   # queue after self._poll_timout seconds, we jump to the start of
   # the while loop again, to give the thread a chance to exit.
   try:
    request = self._requests_queue.get(True, self._poll_timeout)
   except Queue.Empty:#尝从任务 队列self._requests_queue 中get任务,如果队列为空,则continue
    continue
   else:
    if self._dismissed.isSet():#检测此工作线程事件是否被set,如果被设置,意味着要结束此工作线程,那么就需要将取到的任务返回到任务队列中,并且退出线程
     # we are dismissed, put back request in queue and exit loop
     self._requests_queue.put(request)
     break
    try:#如果线程事件没有被设置,那么执行任务处理函数request.callable,并将返回的result,压入到任务结果队列中
     result = request.callable(*request.args, **request.kwds)
     self._results_queue.put((request, result))
    except:
     request.exception = True
     self._results_queue.put((request, sys.exc_info()))#如果任务处理函数出现异常,则将异常压入到队列中

获取任务--->调用任务的处理函数callable()处理任务--->将任务request以及任务返回的结果压入到self.results_queue队列中---->如果任务处理函数异常,那么将任务异常标识设置为True,并将任务request以及任务异常压入到self.results_queue队列中---->再次返回获取任务

如果,在while循环过程中,外部设置了线程事件,即self._dismissed.isSet为True,那么意味着此线程将会结束处理任务,那么会将get到的任务返回的任务队列中,并且退出线程。

6、任务结束处理

上面小节中,介绍了线程池不断的get任务,并且不断的处理任务。那么每个任务结束之后我们该怎么处理呢,线程池提供了wait()以及poll()函数。

当我们把任务提交个线程池之后,我们会调用wait()来等待任务处理结束,结束后wait()将会返回,返回后我们可以进行下一步操作,例如重新创建任务,将任务继续推送到线程池中,或者结束线程池。结束线程池会在下一小节介绍,这一小节主要介绍wait()和poll()操作。

先来看看wait()操作:

def wait(self):
 """Wait for results, blocking until all have arrived."""
 while 1:
  try:
   self.poll(True)
  except NoResultsPending:
   break

等待任务处理结束,在所有任务处理完成之前一直处于block阶段,如果self.poll()返回异常NoResultsPending异常,然后wait返回,任务处理结束。
下面看看poll函数:

def poll(self, block=False):
 """Process any new results in the queue."""
 while True:
  # still results pending?
  if not self.workRequests:
   raise NoResultsPending
  # are there still workers to process remaining requests?
  elif block and not self.workers:
   raise NoWorkersAvailable
  try:
   # get back next results
   request, result = self._results_queue.get(block=block)
   # has an exception occured?
   if request.exception and request.exc_callback:
    request.exc_callback(request, result)
   # hand results to callback, if any
   if request.callback and not \
     (request.exception and request.exc_callback):
    request.callback(request, result)
   del self.workRequests[request.requestID]
  except Queue.Empty:
   break

(1)首先,检测任务字典({request.requestID:request})是否为空,如果为空则抛出异常NoResultPending结束,否则到第2步;

(2)检测工作线程是否为空(如果某个线程的线程事件被设置,那么工作线程退出,并从self.workers中pop出),如果为空则抛出NoWorkerAvailable异常结束,否则进入第3步;

(3)从任务结果队列中get任务结果,如果抛出队列为空,那么break,返回,否则进入第4步;

(4)如果任务处理过程中出现异常,即设置了request.exception,并且设置了异常处理回调即request.exc_callback则执行异常回调,再回调中处理异常,返回后将任务从任务列表self.workRequests中移除,继续get任务,返回第1步。否则进入第5步;

(5)如果设置了任务结果回调即request.callback不为空,则执行任务结果回调即request.callbacl(request,result),并
将任务从任务列表self.workRequests中移除,继续get任务,返回第1步。

(6)重复进行上面的步骤直到抛出异常,或者任务队列为空,则poll返会;

至此抛出NoResultPending wait操作接受此异常后,至此wait()返回。

7、工作线程的退出

threadpool提供的工作线程退出的的操作有dismissWorkers()和joinAllDismissedWorker()操作:

def dismissWorkers(self, num_workers, do_join=False):
 """Tell num_workers worker threads to quit after their current task."""
 dismiss_list = []
 for i in range(min(num_workers, len(self.workers))):
  worker = self.workers.pop()
  worker.dismiss()
  dismiss_list.append(worker) 

 if do_join:
  for worker in dismiss_list:
   worker.join()
 else:
  self.dismissedWorkers.extend(dismiss_list) 

def joinAllDismissedWorkers(self):
 """Perform Thread.join() on all worker threads that have been dismissed.
 """
 for worker in self.dismissedWorkers:
  worker.join()
 self.dismissedWorkers = []

从dismissWorkers可看出,主要工作是从self.workers 工作线程中pop出指定的线程数量,并且设置此线程的线程事件,设置线程事件后,此线程self.run()函数,则会检测到此设置,并结束线程。

如果设置了在do_join,即设置了在此函数中join退出的线程,那么对退出的线程执行join操作。否则将pop出的线程放入到self.dismissedWorkers中,以等待joinAllDismissedWorkers操作去处理join线程。

8、总结

到此为止,threadpool线程池中所有的操作介绍完毕,其实现也做了具体的介绍。从上面可看出,线程池并没有那么复杂,只有几个简单的操作,主要是了解整个处理流程即可。

希望大家多多提出建议和意见。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python线程池threadpool使用篇
  • Python自定义线程池实现方法分析
  • 用python实现的线程池实例代码
  • 浅谈python 线程池threadpool之实现
  • python线程池(threadpool)模块使用笔记详解
  • php与python实现的线程池多线程爬虫功能示例
  • python实现线程池的方法
  • Python实现线程池代码分享
  • 用Python实现一个简单的线程池
  • python线程池的实现实例
(0)

相关推荐

  • python线程池(threadpool)模块使用笔记详解

    最近在做一个视频设备管理的项目,设备包括(摄像机,DVR,NVR等),包括设备信息补全,设备状态推送,设备流地址推送等,如果同时导入的设备数量较多,如果使用单线程进行设备检测,那么由于设备数量较多,会带来较大的延时,因此考虑多线程处理此问题. 可以使用python语言自己实现线程池,或者可以使用第三方包threadpool线程池包,本主题主要介绍threadpool的使用以及其里面的具体实现. 一.安装与简介 pip install threadpool pool = ThreadPool(po

  • python实现线程池的方法

    本文实例讲述了python实现线程池的方法.分享给大家供大家参考.具体如下: 原理:建立一个任务队列,然多个线程都从这个任务队列中取出任务然后执行,当然任务队列要加锁,详细请看代码 文件名:thrd_pool.py 系统环境:ubuntu linux & python2.6 import threading import time import signal import os class task_info(object): def __init__(self): self.func = No

  • 用python实现的线程池实例代码

    python3标准库里自带线程池ThreadPoolExecutor和进程池ProcessPoolExecutor. 如果你用的是python2,那可以下载一个模块,叫threadpool,这是线程池.对于进程池可以使用python自带的multiprocessing.Pool. 当然也可以自己写一个threadpool. # coding:utf-8 import Queue import threading import sys import time import math class W

  • php与python实现的线程池多线程爬虫功能示例

    本文实例讲述了php与python实现的线程池多线程爬虫功能.分享给大家供大家参考,具体如下: 多线程爬虫可以用于抓取内容了这个可以提升性能了,这里我们来看php与python 线程池多线程爬虫的例子,代码如下: php例子 <?php class Connect extends Worker //worker模式 { public function __construct() { } public function getConnection() { if (!self::$ch) { sel

  • python线程池threadpool使用篇

    最近在做一个视频设备管理的项目,设备包括(摄像机,DVR,NVR等),包括设备信息补全,设备状态推送,设备流地址推送等,如果同时导入的设备数量较多,如果使用单线程进行设备检测,那么由于设备数量较多,会带来较大的延时,因此考虑多线程处理此问题. 可以使用python语言自己实现线程池,或者可以使用第三方包threadpool线程池包,本主题主要介绍threadpool的使用以及其里面的具体实现. 1.安装 使用安装: pip installthreadpool 2.使用 (1)引入threadpo

  • 浅谈python 线程池threadpool之实现

    首先介绍一下自己使用到的名词: 工作线程(worker):创建线程池时,按照指定的线程数量,创建工作线程,等待从任务队列中get任务: 任务(requests):即工作线程处理的任务,任务可能成千上万个,但是工作线程只有少数.任务通过          makeRequests来创建 任务队列(request_queue):存放任务的队列,使用了queue实现的.工作线程从任务队列中get任务进行处理: 任务处理函数(callable):工作线程get到任务后,通过调用任务的任务处理函数即(re

  • python线程池的实现实例

    直接上代码: 复制代码 代码如下: # -*- coding: utf-8 -*- import Queue import threadingimport urllibimport urllib2import os def down(url,n):    print 'item '+str(n)+' start '    filename=urllib2.unquote(url).decode('utf8').split('/')[-1]    urllib.urlretrieve(url, f

  • Python自定义线程池实现方法分析

    本文实例讲述了Python自定义线程池实现方法.分享给大家供大家参考,具体如下: 关于python的多线程,由与GIL的存在被广大群主所诟病,说python的多线程不是真正的多线程.但多线程处理IO密集的任务效率还是可以杠杠的. 我实现的这个线程池其实是根据银角的思路来实现的. 主要思路: 任务获取和执行: 1.任务加入队列,等待线程来获取并执行. 2.按需生成线程,每个线程循环取任务. 线程销毁: 1.获取任务是终止符时,线程停止. 2.线程池close()时,向任务队列加入和已生成线程等量的

  • Python实现线程池代码分享

    原理:建立一个任务队列,然多个线程都从这个任务队列中取出任务然后执行,当然任务队列要加锁,详细请看代码 import threading import time import signal import os class task_info(object): def __init__(self): self.func = None self.parm0 = None self.parm1 = None self.parm2 = None class task_list(object): def

  • 用Python实现一个简单的线程池

    线程池的概念是什么? 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是 如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收.所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些 很耗资源的对象创建和销毁.如何利用已有对象来服务就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因. 我理解为线程池是一个存放很多线程的单位,同时还有一个对应的任务队列.整个执行过程其实就是使

随机推荐