在Python下尝试多线程编程

多任务可以由多进程完成,也可以由一个进程内的多线程完成。

我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程。

由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程。

Python的标准库提供了两个模块:thread和threading,thread是低级模块,threading是高级模块,对thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行:

import time, threading

# 新线程执行的代码:
def loop():
  print 'thread %s is running...' % threading.current_thread().name
  n = 0
  while n < 5:
    n = n + 1
    print 'thread %s >>> %s' % (threading.current_thread().name, n)
    time.sleep(1)
  print 'thread %s ended.' % threading.current_thread().name

print 'thread %s is running...' % threading.current_thread().name
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print 'thread %s ended.' % threading.current_thread().name

执行结果如下:

thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread ended.
thread MainThread ended.

由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……
Lock

多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。

来看看多个线程同时操作一个变量怎么把内容给改乱了:

import time, threading

# 假定这是你的银行存款:
balance = 0

def change_it(n):
  # 先存后取,结果应该为0:
  global balance
  balance = balance + n
  balance = balance - n

def run_thread(n):
  for i in range(100000):
    change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print balance

我们定义了一个共享变量balance,初始值为0,并且启动两个线程,先存后取,理论上结果应该为0,但是,由于线程的调度是由操作系统决定的,当t1、t2交替执行时,只要循环次数足够多,balance的结果就不一定是0了。

原因是因为高级语言的一条语句在CPU执行时是若干条语句,即使一个简单的计算:

balance = balance + n

也分两步:

  1. 计算balance + n,存入临时变量中;
  2. 将临时变量的值赋给balance。

也就是可以看成:

x = balance + n
balance = x

由于x是局部变量,两个线程各自都有自己的x,当代码正常执行时:

初始值 balance = 0

t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t1: balance = x1   # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1   # balance = 0

t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2   # balance = 8
t2: x2 = balance - 8 # x2 = 8 - 8 = 0
t2: balance = x2   # balance = 0

结果 balance = 0

但是t1和t2是交替运行的,如果操作系统以下面的顺序执行t1、t2:

初始值 balance = 0

t1: x1 = balance + 5 # x1 = 0 + 5 = 5

t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2   # balance = 8

t1: balance = x1   # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1   # balance = 0

t2: x2 = balance - 5 # x2 = 0 - 5 = -5
t2: balance = x2   # balance = -5

结果 balance = -5

究其原因,是因为修改balance需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。

两个线程同时一存一取,就可能导致余额不对,你肯定不希望你的银行存款莫名其妙地变成了负数,所以,我们必须确保一个线程在修改balance的时候,别的线程一定不能改。

如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()来实现:

balance = 0
lock = threading.Lock()

def run_thread(n):
  for i in range(100000):
    # 先要获取锁:
    lock.acquire()
    try:
      # 放心地改吧:
      change_it(n)
    finally:
      # 改完了一定要释放锁:
      lock.release()

当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。

获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try...finally来确保锁一定会被释放。

锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。
多核CPU

如果你不幸拥有一个多核CPU,你肯定在想,多核应该可以同时执行多个线程。

如果写一个死循环的话,会出现什么情况呢?

打开Mac OS X的Activity Monitor,或者Windows的Task Manager,都可以监控某个进程的CPU使用率。

我们可以监控到一个死循环线程会100%占用一个CPU。

如果有两个死循环线程,在多核CPU中,可以监控到会占用200%的CPU,也就是占用两个CPU核心。

要想把N核CPU的核心全部跑满,就必须启动N个死循环线程。

试试用Python写个死循环:

import threading, multiprocessing

def loop():
  x = 0
  while True:
    x = x ^ 1

for i in range(multiprocessing.cpu_count()):
  t = threading.Thread(target=loop)
  t.start()

启动与CPU核心数量相同的N个线程,在4核CPU上可以监控到CPU占用率仅有160%,也就是使用不到两核。

即使启动100个线程,使用率也就170%左右,仍然不到两核。

但是用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%,为什么Python不行呢?

因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。

GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。

不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。
小结

多线程编程,模型复杂,容易发生冲突,必须用锁加以隔离,同时,又要小心死锁的发生。

Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。多线程的并发在Python中就是一个美丽的梦。

(0)

相关推荐

  • python使用线程封装的一个简单定时器类实例

    本文实例讲述了python使用线程封装的一个简单定时器类.分享给大家供大家参考.具体实现方法如下: from threading import Timer class MyTimer: def __init__(self): self._timer= None self._tm = None self._fn = None def _do_func(self): if self._fn: self._fn() self._do_start() def _do_start(self): self.

  • 浅析Python多线程下的变量问题

    在多线程环境下,每个线程都有自己的数据.一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁. 但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦: def process_student(name): std = Student(name) # std是局部变量,但是每个函数都要用它,因此必须传进去: do_task_1(std) do_task_2(std) def do_task_1(std): do_subtask

  • Python下线程之间的共享和释放示例

    最近被多线程给坑了下,没意识到类变量在多线程下是共享的,还有一个就是没意识到 内存释放问题,导致越累越大 1.python 类变量 在多线程情况 下的 是共享的 2.python 类变量 在多线程情况 下的 释放是不完全的 3.python 类变量 在多线程情况 下没释放的那部分 内存 是可以重复利用的 import threading import time class Test: cache = {} @classmethod def get_value(self, key): value

  • python通过线程实现定时器timer的方法

    本文实例讲述了python通过线程实现定时器timer的方法.分享给大家供大家参考.具体分析如下: 这个python类实现了一个定时器效果,调用非常简单,可以让系统定时执行指定的函数 下面介绍以threading模块来实现定时器的方法. 使用前先做一个简单试验: import threading def sayhello(): print "hello world" global t #Notice: use global variable! t = threading.Timer(5

  • python定时器使用示例分享

    复制代码 代码如下: class SLTimer(multiprocessing.Process):    #from datetime import datetime    #import time def __init__(self, target=None, args=(), kwargs={},date=None,time=None):        '''\        @param date 1900-01-01        @param time 00:00:00       

  • 用Python编写简单的定时器的方法

    下面介绍以threading模块来实现定时器的方法. 首先介绍一个最简单实现: import threading def say_sth(str): print str t = threading.Timer(2.0, say_sth,[str]) t.start() if __name__ == '__main__': timer = threading.Timer(2.0,say_sth,['i am here too.']) timer.start() 不清楚在某些特殊应用场景下有什么缺陷

  • python单线程实现多个定时器示例

    单线程实现多个定时器 NewTimer.py 复制代码 代码如下: #!/usr/bin/env python from heapq import *from threading import Timerimport threadingimport uuidimport timeimport datetimeimport sysimport math global TimerStampglobal TimerTimes class CancelFail(Exception):    pass c

  • 在Python下尝试多线程编程

    多任务可以由多进程完成,也可以由一个进程内的多线程完成. 我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程. 由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程. Python的标准库提供了两个模块:thread和threading,thread是低级模块,threading是高级模块,对thread进行了封装.绝大多数情况下,我们只需要使用threading

  • Python中尝试多线程编程的一个简明例子

    综述     多线程是程序设计中的一个重要方面,尤其是在服务器Deamon程序方面.无论何种系统,线程调度的开销都比传统的进程要快得多.   Python可以方便地支持多线程.可以快速创建线程.互斥锁.信号量等等元素,支持线程读写同步互斥.美中不足的是,Python的运行在Python 虚拟机上,创建的多线程可能是虚拟的线程,需要由Python虚拟机来轮询调度,这大大降低了Python多线程的可用性.希望高版本的Python可以 解决这个问题,发挥多CPU的最大效率.   网上有些朋友说要获得真

  • Linux下的多线程编程实例解析

    1 引言 线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者.传统的Unix也支持线程的概念,但是在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程.现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux. 为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题. 使用多线程的理由之一是和进程相比,它

  • 详解Python中的多线程编程

    一.简介 多线程编程技术可以实现代码并行性,优化处理能力,同时功能的更小划分可以使代码的可重用性更好.Python中threading和Queue模块可以用来实现多线程编程. 二.详解 1.线程和进程        进程(有时被称为重量级进程)是程序的一次执行.每个进程都有自己的地址空间.内存.数据栈以及其它记录其运行轨迹的辅助数据.操作系统管理在其上运行的所有进程,并为这些进程公平地分配时间.进程也可以通过fork和spawn操作来完成其它的任务,不过各个进程有自己的内存空间.数据栈等,所以只

  • 简单介绍利用TK在Python下进行GUI编程的教程

    我想要向您介绍能想像到的开始 GUI 编程的最简单方法,就是使用 Scriptics 的 TK 和 Tkinter 封装器.我们将与 developerWorks 中的 "Python 中的 curses 编程" 提到的 curses 库进行很多比较.除了 curses 实现文本控制台而 TK 实现 GUI 这一差别之外,这两个库有着惊人相似的接口.在使用任何一个库之前,需要基本了解窗口和事件循环,并参考可用的窗口小部件.(好,好的参考和适量的练习.) 如同关于 curses 的文章,

  • 初步解析Python下的多进程编程

    要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识. Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回. 子进程永远返回0,而父进程返回子进程的ID.这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用get

  • Linux下的多线程编程(三)

    下面先来一个实例.我们通过创建两个线程来实现对一个数的递加. 或许这个实例没有实际运用的价值,但是稍微改动一下,我们就可以用到其他地方去拉. 下面是我们的代码: /*thread_example.c : c multiple thread programming in linux *author : falcon *E-mail : tunzhj03@st.lzu.edu.cn */ #include <pthread.h> #include <stdio.h> #include

  • 详解Linux多线程编程(不限Linux)

    前言 线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步.互斥,这些东西将在本文中介绍.我在某QQ群里见到这样一道面试题: 是否熟悉POSIX多线程编程技术?如熟悉,编写程序完成如下功能: 1)有一int型全局变量g_Flag初始值为0: 2) 在主线称中起动线程1,打印"this is thread1",并将g_Flag设置为1 3) 在主线称中启动线程2,打印"this is thread2"

  • VC多线程编程详解

    本文实例讲述了VC多线程编程概念与技巧,分享给大家供大家参考.具体分析如下: 一.多线程编程要点 线程是进程的一条执行路径,它包含独立的堆栈和CPU寄存器状态,每个线程共享所有的进程资源,包括打开的文件.信号标识及动态分配的内存等.一个进程内的所有线程使用同一个地址空间,而这些线程的执行由系统调度程序控制,调度程序决定哪个线程可执行以及什么时候执行线程.线程有优先级别,优先权较低的线程必须等到优先权较高的线程执行完后再执行.在多处理器的机器上,调度程序可将多个线程放到不同的处理器上去运行,这样可

  • Linux多线程编程快速入门

    本文主要对Linux下的多线程进行一个入门的介绍,虽然是入门,但是十分详细,希望大家通过本文所述,对Linux多线程编程的概念有一定的了解.具体如下. 1 线程基本知识 进程是资源管理的基本单元,而线程是系统调度的基本单元,线程是操作系统能够进行调度运算的最小单位,它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. 一个进程在某一个时刻只能做一件事情,有了多个控制线程以后,在程序的设计成在某一个时刻能够做

随机推荐