python装饰器与递归算法详解

1、python装饰器

刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了。总结了一下解释得比较好的,通俗易懂的来说明一下:

小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣:

 def sum1():
   sum = 1 + 2
   print(sum)
 sum1()

此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了:

 import time

 def sum1():
   start = time.clock()
   sum = 1+2
   print(sum)
   end = time.clock()
   print("time used:",end - start)

 sum1()

运行之后,完美~~

可是随着继续翻看,小P对越来越多的函数感兴趣了,都想看下他们的运行时间如何,难道要一个一个的去改函数吗?当然不是!我们可以考虑重新定义一个函数timeit,将sum1的引用传递给他,然后在timeit中调用sum1并进行计时,这样,我们就达到了不改动sum1定义的目的,而且,不论小P看了多少个函数,我们都不用去修改函数定义了!

import time

def sum1():
  sum = 1+ 2
  print (sum)

def timeit(func):
  start = time.clock()
  func()
  end =time.clock()
  print("time used:", end - start)

timeit(sum1)

咂一看,没啥问题,可以运行!但是还是修改了一部分代码,把sum1() 改成了timeit(sum1)。这样的话,如果sum1在N处都被调用了,你就不得不去修改这N处的代码。所以,我们就需要杨sum1()具有和timeit(sum1)一样的效果,于是将timeit赋值给sum1。可是timeit是有参数的,所以需要找个方法去统一参数,将timeit(sum1)的返回值(计算运行时间的函数)赋值给sum1。

 import time

 def sum1():
   sum = 1+ 2
   print (sum)

 def timeit(func):
   def test():
     start = time.clock()
     func()
     end =time.clock()
     print("time used:", end - start)
   return test

 sum1 = timeit(sum1)
 sum1()

这样一个简易的装饰器就做好了,我们只需要在定义sum1以后调用sum1之前,加上sum1= timeit(sum1),就可以达到计时的目的,这也就是装饰器的概念,看起来像是sum1被timeit装饰了!Python于是提供了一个语法糖来降低字符输入量。

 import time

 def timeit(func):
   def test():
     start = time.clock()
     func()
     end =time.clock()
     print("time used:", end - start)
   return test

 @timeit
 def sum1():
   sum = 1+ 2
   print (sum)

 sum1()

重点关注第11行的@timeit,在定义上加上这一行与另外写sum1 = timeit(sum1)完全等价。

2、递归算法

递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。

递归算法解决问题的特点:

(1) 递归就是在过程或函数里调用自身。
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。

举个栗子:对一个数字进行除2求值,直到小于等于1时退出并输出结果

def divide(n,val):
  n += 1
  print(val)
  if val / 2 > 1:
    aa = divide(n,val/2)
    print('the num is %d,aa is %f' % (n,aa))
  print('the num is %d,val is %f' % (n,val))
  return(val)

divide(0,50.0)

结果说明(不return时相当于嵌套循环,一层层进入在一层层退出):

50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 5,val is 3.125000
the num is 4,aa is 3.125000
the num is 4,val is 6.250000
the num is 3,aa is 6.250000
the num is 3,val is 12.500000
the num is 2,aa is 12.500000
the num is 2,val is 25.000000
the num is 1,aa is 25.000000
the num is 1,val is 50.000000

2、递归时return:

def divide(n,val):
  n += 1
  print(val)
  if val / 2 > 1:
    aa = divide(n,val/2)
    print('the num is %d,aa is %f' % (n,aa))
    return(aa)
  print('the num is %d,val is %f' % (n,val))
  return(val)

divide(0,50.0)

结果说明(return时就直接结束本次操作):

50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 4,aa is 1.562500
the num is 3,aa is 1.562500
the num is 2,aa is 1.562500
the num is 1,aa is 1.562500

用递归实现斐波那契函数

def feibo(first,second,stop,list):

  if first >= stop or second >= stop:
    return list
  else:
    sum = first + second
    list.append(sum)
    if sum <= stop:
      return feibo(second,sum,stop,list)

  return list

if __name__ == '__main__':
  first = int(raw_input('please input the first number:'))
  second = int(raw_input('please input the second number:'))
  stop = int(raw_input('please input the stop number:'))
  l = [first,second]
  a = feibo(first,second,stop,l)
  print(a)
(0)

相关推荐

  • python k-近邻算法实例分享

    简单说明 这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了. 简称kNN. 已知:训练集,以及每个训练集的标签. 接下来:和训练集中的数据对比,计算最相似的k个距离.选择相似数据中最多的那个分类.作为新数据的分类. python实例 复制代码 代码如下: # -*- coding: cp936 -*- #win系统中应用cp936编码,linux中最好还是utf-8比较好.from numpy import *#引入科学计算包import operator #经典pyt

  • 使用python实现递归版汉诺塔示例(汉诺塔递归算法)

    利用python实现的汉诺塔.带有图形演示 复制代码 代码如下: from time import sleep def disp_sym(num, sym):        print(sym*num, end='') #recusiondef hanoi(a, b, c, n, tray_num): if n == 1:  move_tray(a, c)  disp(tray_num)  sleep(0.7) else:  hanoi(a, c, b, n-1, tray_num)  move

  • Python实现的Kmeans++算法实例

    1.从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了.下面说一下如何在matlab中使用kmeans算法. 创建7个二维的数据点: 复制代码 代码如下: x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]; 使用kmeans函数: 复制代码 代码如下: class = kmeans(x, 2); x是数据点,x的每一行代表一个数据:2指定要有2个中心点,也就是聚类结果要有2个簇. class将是一个具有7

  • Python算法之栈(stack)的实现

    本文以实例形式展示了Python算法中栈(stack)的实现,对于学习数据结构域算法有一定的参考借鉴价值.具体内容如下: 1.栈stack通常的操作: Stack() 建立一个空的栈对象 push() 把一个元素添加到栈的最顶层 pop() 删除栈最顶层的元素,并返回这个元素 peek()  返回最顶层的元素,并不删除它 isEmpty()  判断栈是否为空 size()  返回栈中元素的个数 2.简单案例以及操作结果: Stack Operation Stack Contents Return

  • Python基于递归算法实现的走迷宫问题

    本文实例讲述了Python基于递归算法实现的走迷宫问题.分享给大家供大家参考,具体如下: 什么是递归? 简单地理解就是函数调用自身的过程就称之为递归. 什么时候用到递归? 如果一个问题可以表示为更小规模的迭代运算,就可以使用递归算法. 迷宫问题:一个由0或1构成的二维数组中,假设1是可以移动到的点,0是不能移动到的点,如何从数组中间一个值为1的点出发,每一只能朝上下左右四个方向移动一个单位,当移动到二维数组的边缘,即可得到问题的解,类似的问题都可以称为迷宫问题. 在python中可以使用list

  • Python 连连看连接算法

    功能:为连连看游戏提供连接算法 说明:模块中包含一个Point类,该类是游戏的基本单元"点",该类包含属性:x,y,value. 其中x,y代表了该点的坐标,value代表该点的特征:0代表没有被填充,1-8代表被填充为游戏图案,9代表被填充为墙壁 模块中还包含一个名为points的Point列表,其中保存着整个游戏界面中的每个点 使用模块的时候应首先调用createPoints方法,初始化游戏界面中每个点,然后可通过points访问到每个点,继而初始化界面 模块中核心的方法是link

  • Python爬虫包 BeautifulSoup 递归抓取实例详解

    Python爬虫包 BeautifulSoup  递归抓取实例详解 概要: 爬虫的主要目的就是为了沿着网络抓取需要的内容.它们的本质是一种递归的过程.它们首先需要获得网页的内容,然后分析页面内容并找到另一个URL,然后获得这个URL的页面内容,不断重复这一个过程. 让我们以维基百科为一个例子. 我们想要将维基百科中凯文·贝肯词条里所有指向别的词条的链接提取出来. # -*- coding: utf-8 -*- # @Author: HaonanWu # @Date: 2016-12-25 10:

  • python实现汉诺塔递归算法经典案例

    学到递归的时候有个汉诺塔的练习,汉诺塔应该是学习计算机递归算法的经典入门案例了,所以本人觉得可以写篇博客来表达一下自己的见解.这markdown编辑器还不怎么会用,可能写的有点格式有点丑啦,各位看官多多见谅. 网上找了一张汉诺塔的图片,汉诺塔就是利用用中间的柱子把最左边的柱子上的圆盘依次从大到小叠上去,说白了就是c要跟原来的a一样 废话少说,先亮代码 def move(n, a, buffer, c): if(n == 1): print(a,"->",c) return mov

  • python二分查找算法的递归实现方法

    本文实例讲述了python二分查找算法的递归实现方法.分享给大家供大家参考,具体如下: 这里先提供一段二分查找的代码: def binarySearch(alist, item): first = 0 last = len(alist)-1 found = False while first<=last and not found: midpoint = (first + last)//2 if alist[midpoint] == item: found = True else: if ite

  • python装饰器与递归算法详解

    1.python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说明一下: 小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣: def sum1(): sum = 1 + 2 print(sum) sum1() 此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了: import time def sum1(): star

  • python装饰器实例大详解

    一.作用域 在python中,作用域分为两种:全局作用域和局部作用域. 全局作用域是定义在文件级别的变量,函数名.而局部作用域,则是定义函数内部. 关于作用域,我们要理解两点: a.在全局不能访问到局部定义的变量 b.在局部能够访问到全局定义的变量,但是不能修改全局定义的变量(当然有方法可以修改) 下面我们来看看下面实例: x = 1 def funx(): x = 10 print(x) # 打印出10 funx() print(x) # 打印出1 如果局部没有定义变量x,那么函数内部会从内往

  • python装饰器使用实例详解

    这篇文章主要介绍了python装饰器使用实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 python装饰器的作用就是在不想改变原函数代码的情况下,增加新的功能.主要应用了python闭包的概念,现在用1个小例子说明 import time def foo(): time.sleep(1) def bar(): time.sleep(2) def show_time(f): def inner(): start_time = time.t

  • Python 中的函数装饰器和闭包详解

    函数装饰器可以被用于增强方法的某些行为,如果想自己实现装饰器,则必须了解闭包的概念. 装饰器的基本概念 装饰器是一个可调用对象,它的参数是另一个函数,称为被装饰函数.装饰器可以修改这个函数再将其返回,也可以将其替换为另一个函数或者可调用对象. 例如:有个名为 decorate 的装饰器: @decorate def target(): print('running target()') 上述代码的写法和以下写法的效果是一样的: def target(): print('running targe

  • Python 带有参数的装饰器实例代码详解

    demo.py(装饰器,带参数的装饰器): def set_level(level_num): def set_func(func): def call_func(*args, **kwargs): if level_num == 1: print("----权限级别1,验证----") elif level_num == 2: print("----权限级别2,验证----") return func() return call_func return set_f

  • Python函数装饰器的使用详解

    目录 装饰器 装饰器的定义 装饰器的意义 装饰器的使用 无参装饰器 有参装饰器 实例练习 总结 装饰器 装饰器的定义 关于装饰器的定义,我们先来看一段github上大佬的定义: Function decorators are simply wrappers to existing functions.In the context of design patterns,decorators dynamically alter the functionality of a function, met

  • Python使用自定义装饰器的示例详解

    在Python自动化测试中,使用自定义的装饰器来给测试方法传递测试数据: reader.py import csv import json from openpyxl import load_workbook from setting import DATA_DIR from os import path class Reader: @classmethod def read_excel(cls,xlname, min_row, max_row, min_col, max_col): xlnam

  • Typescript装饰器AOP示例详解

    目录 在Typescript中使用装饰器 配置 类装饰器 方法装饰器 AOP(面向切面编程) 在Typescript中使用装饰器 上文中讲了装饰模式,今天来来介绍一些Typescript里面的装饰器,以及如何用装饰器来实现之前提及装饰模式,装饰器只是实现装饰模式的一种方式,并非唯一 配置 在Typescript要使用装饰器需要在tsconfig打开装饰器的语法 "compilerOptions": { "experimentalDecorators": true }

  • Python函数装饰器实现方法详解

    本文实例讲述了Python函数装饰器实现方法.分享给大家供大家参考,具体如下: 编写函数装饰器 这里主要介绍编写函数装饰器的相关内容. 跟踪调用 如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息. class tracer: def __init__(self,func): self.calls = 0 self.func = func def __call__(self,*args): self.calls += 1 print('call %s

  • python装饰器底层原理详解

    目录 1 python装饰器的作用 2 python装饰器的原理 3 python装饰器的实现 3.1 最简陋的装饰器 3.2 给有返回值的函数加上装饰器 3.3 给有返回值和参数的函数加上装饰器 3.4 让我还是那个我 4 python装饰器在自动化测试框架中的应用 4.1 从一个需求开始 1 python装饰器的作用 被装饰对象加上装饰器(戴了个帽子),被装饰对象获得了更强大的功能. 2 python装饰器的原理 python装饰器本身是一个函数 这个函数的参数是一个函数对象 这个函数的返回

随机推荐