C++二叉树结构的建立与基本操作

准备数据
定义二叉树结构操作中需要用到的变量及数据等。


代码如下:

#define MAXLEN 20    //最大长度
typedef char DATA;    //定义元素类型
struct  CBTType                   //定义二叉树结点类型
{
 DATA data;           //元素数据
 CBTType * left;    //左子树结点指针
 CBTType * right;   //右子树结点指针
};

定义二叉树结构数据元素的类型DATA以及二叉树结构的数据结构CBTType。结点的具体数据保存在一个姐都DATA中,而指针left用来指向左子树结点,指针right用来指向右子树结点

初始化二叉树
初始化二叉树,将一个结点设置为二叉树的根结点。


代码如下:

CBTType * InitTree()
{
 CBTType * node;
 if(node = new CBTType)  //申请内存
 {
  cout<<"请先输入一个根节点数据:"<<endl;
  cin>>node->data;
  node->left=NULL;
  node->right=NULL;
  if(node!=NULL)   //如果二叉树结点不为空
  {
   return node;  
  } else
  {
   return NULL;
  }
 }
 return NULL;
}

首先申请一个结点,然后用户输入根结点 的数据,并将左子树和右子树的指针置为空,即可完成二叉树的初始化工作。

查找结点

查找结点就是遍历二叉树中的每一个节点,逐个比较数据,当找到目标数据时将返回该数据所在结点的指针。


代码如下:

CBTType *TreeFindNode(CBTType *treeNode,DATA data)
{
 CBTType *ptr;
 if(treeNode==NULL)
 {
  return NULL;
 }else
 {
  if(treeNode->data==data)
  {
   return treeNode;
  }
  else        //分别向左右子树查找   
  {
   if(ptr=TreeFindNode(treeNode->left,data))  //左子树递归查找
   {
    return ptr;
   }
   else if(ptr=TreeFindNode(treeNode->right,data))         //右子树递归查找
   {
    return ptr;
   }
   else
   {
    return NULL;
   }
  }
 }
}

输入参数treeNode为待查找的二叉树的根结点,输入参数data为待查找的结点数据。程序中首先判断根结点是否为空,然后根据数据判断是否为根结点,然后分别向左右子树进行查找,采用递归的方法进行查找,查找到该结点则返回结点对应的指针;如果全都查找不到,则返回NULL。

添加结点
添加结点就是在二叉树中添加结点数据,添加结点时除了要输入结点数据外,还需要指定其父结点,以及添加的结点作为左子树还是右子树。然后将该结点置为其父结点的左子树或者右子树。


代码如下:

void AddTreeNode(CBTType *treeNode)
{
 CBTType *pnode,*parent;
 DATA data;
 char menusel;
 if(pnode=new CBTType)     //分配内存
 {
  cout<<"输入二叉树结点数据:"<<endl;
  cin>>pnode->data;
  pnode->left=NULL;     //设置左子树为空
  pnode->right=NULL;     //设置左子树为空
  cout<<"输入该结点的父结点数据"<<endl;
  cin>>data;
  parent=TreeFindNode(treeNode,data);//查找父结点,获得结点指针
  if(!parent)
  {
   cout<<"没有找到父结点"<<endl;
   delete pnode;
   return ;
  }
  cout<<"1.添加该结点到左子树;2.添加该结点到右子树。请输入操作对应的数字。"<<endl;
  do
  {
   cin>>menusel;
   if(menusel=='1'||menusel=='2')
   {
    switch(menusel)
    {
     case '1':     //添加结点到左子树
      if(parent->left)                 //左子树不为空
      {
       cout<<"左子树结点不为空"<<endl;
      }
      else
      {
       parent->left=pnode;
       cout<<"数据添加成功!"<<endl;
      }
      break;
     case '2':     //添加结点到右子树
      if(parent->right)                 //右子树不为空
      {
       cout<<"右子树结点不为空"<<endl;
      }
      else
      {
       parent->right=pnode;
       cout<<"数据添加成功!"<<endl;
      }
      break;
     default:
      cout<<"子节点选择error!"<<endl;
      break;
    }
   }
  }while(menusel!='1'&&menusel!='2');
 }
}

输入参数treeNode为二叉树的根结点,传入根节点是为了方便查找父结点。程序中首先申请内存,然后由用户输入二叉树结点数据,并设置左右子树为空。接着指定其父结点,将其置为左子树或者右子树。

计算二叉树的深度
计算二叉树深度就是计算二叉树中结点的最大层数,这里往往需要采用递归算法来实现。


代码如下:

int TreeDepth(CBTType *treeNode)
{
 int depleft,depright;
 if(treeNode==NULL)
 {
  return 0;     //结点为空的时候,深度为0
 }
 else
 {
  depleft=TreeDepth(treeNode->left);  //左子树深度(递归调用)
  depright=TreeDepth(treeNode->right);         //右子树深度(递归调用)
  if(depleft)
  {
   return ++depleft;
  }
  else
  {
   return ++depright;
  }
 }
}

输入参数treeNode为待计算的二叉树的根结点。首先判断根节点是否为空,然后分别按照递归调用来计算左子树深度和右子树深度,从而完成整个二叉树深度的计算。

显示结点数据


代码如下:

void ShowNodeData(CBTType *treeNode)
{
 cout<<treeNode->data<<"\t";     //直接输出结点数据
}

输入参数为需要显示的结点的指针。

清空二叉树
清空二叉树就是将二叉树变成一个空树,这里也需要使用递归算法来实现。


代码如下:

void ClearTree(CBTType *treeNode)
{
 if(treeNode)        //判断当前树不为空
 {
  ClearTree(treeNode->left);            //清空左子树
  ClearTree(treeNode->right);            //清空右子树
  delete treeNode;      //释放当前结点所占用的内存 
 }
}

输入参数treeNode为待清空的二叉树的根节点。程序中按照递归的方法清空左子树和右子树以及根节点,释放结点占用的内存空间,从而完成清空操作。

遍历二叉树
遍历二叉树就是逐个查找二叉树中所有的结点,这里为了直观的显示查找的结果,将会按照查找的顺序,依次输出对应的结点 。

按层遍历算法
按层遍历算法是最直观的算法。即:首先输出第一层即根结点,然后输出第一个结点的左右子数,也就是第二层……这样循环处理,就可以逐层遍历,一层一层按照从上到下,从左到右的顺序输出结点。


代码如下:

void LevelTree(CBTType *treeNode)
{
 CBTType *p;
 CBTType *q[MAXLEN];       //定义一个队列
 int head=0,tail=0;
 if(treeNode)        //如果队首指针不为空
 {
  tail=(tail+1)%MAXLEN;             //计算循环队列队尾序号
  q[tail]=treeNode;      //二叉树根指针进入队列
  while(head!=tail)
  {
   head=(head+1)%MAXLEN;            //计算循环队列的队首序号
   p=q[head];      //获取队首元素
   ShowNodeData(p);     //输出队首元素
   if(p->left!=NULL)     //如果存在左子树
   {
    tail=(tail+1)%MAXLEN;           //计算队列的队尾序号
    q[tail]=p->left;    //左子树入队
   }
   if(p->right!=NULL)     //如果存在右子树
   {
    tail=(tail+1)%MAXLEN;           //计算队列的队尾序号
    q[tail]=p->right;    //右子树入队
   }
  }
 }
}

输入参数treeNode为需要遍历的二叉树的根结点,程序在整个处理过程中,首先从根节点开始,将每层的结点逐步进入循环队列,并且每次循环都是输出队首的一个结点数据,然后再使它的左右子树进入队列。如此循环直到队列中的所有的数据都输出完毕。

先序遍历算法
先序遍历算法就是先访问根节点,然后访问左子树,然后访问右子树。程序中可以按照递归的思想遍历左子树和右子树。


代码如下:

void DLRTree(CBTType *treeNode)
{
 if(treeNode)
 {
  ShowNodeData(treeNode);     //显示结点内容
  DLRTree(treeNode->left);    //显示左子树内容
  DLRTree(treeNode->right);    //显示右子树内容
 }
}

中序遍历算法
先序遍历算法就是先访问左子树,然后访问根节点,然后访问右子树。程序中可以按照递归的思想遍历左子树和右子树。


代码如下:

void LDRTree(CBTType *treeNode)
{
 if(treeNode)
 {

LDRTree(treeNode->left);    //显示左子树内容   
  ShowNodeData(treeNode);     //显示结点内容
  DLRTree(treeNode->right);    //显示右子树内容    
 } 
}

后序遍历算法
先序遍历算法就是先访问左子树,然后访问右子树,然后访问根节点。程序中可以按照递归的思想遍历左子树和右子树。


代码如下:

void LRDTree(CBTType *treeNode)
{
 if(treeNode)
 {
  LRDTree(treeNode->left);    //显示左子树内容 
  DLRTree(treeNode->right);    //显示右子树内容    
  ShowNodeData(treeNode);     //显示结点内容
 } 
}

完整代码示例操作:

在文件中加入头文件,然后包含上述所有函数,然后再写一个main函数即可:


代码如下:

#include<iostream>
using namespace std;
#define MAXLEN 20            //最大长度
typedef char DATA;            //定义元素类型
struct  CBTType                           /定义二叉树结点类型
{
 DATA data;     //元素数据
 CBTType * left;     //左子树结点指针
 CBTType * right;    //右子树结点指针
};
/*********************初始化二叉树***********************/
CBTType * InitTree()
{
 CBTType * node;
 if(node = new CBTType)                   //申请内存
 {
  cout<<"请先输入一个根节点数据:"<<endl;
  cin>>node->data;
  node->left=NULL;
  node->right=NULL;
  if(node!=NULL)            //如果二叉树结点不为空
  {
   return node;  
  } else
  {
   return NULL;
  }
 }
 return NULL;
}
/***********************查找结点*************************/
CBTType *TreeFindNode(CBTType *treeNode,DATA data)
{
 CBTType *ptr;
 if(treeNode==NULL)
 {
  return NULL;
 }else
 {
  if(treeNode->data==data)
  {
   return treeNode;
  }
  else        //分别向左右子树查找   
  {
   if(ptr=TreeFindNode(treeNode->left,data))  //左子树递归查找
   {
    return ptr;
   }
   else if(ptr=TreeFindNode(treeNode->right,data))         //右子树递归查找
   {
    return ptr;
   }
   else
   {
    return NULL;
   }
  }
 }
}
/**********************添加结点*************************/
void AddTreeNode(CBTType *treeNode)
{
 CBTType *pnode,*parent;
 DATA data;
 char menusel;
 if(pnode=new CBTType)              //分配内存
 {
  cout<<"输入二叉树结点数据:"<<endl;
  cin>>pnode->data;
  pnode->left=NULL;     //设置左子树为空
  pnode->right=NULL;     //设置左子树为空
  cout<<"输入该结点的父结点数据"<<endl;
  cin>>data;
  parent=TreeFindNode(treeNode,data);                     //查找父结点,获得结点指针
  if(!parent)
  {
   cout<<"没有找到父结点"<<endl;
   delete pnode;
   return ;
  }
  cout<<"1.添加该结点到左子树;2.添加该结点到右子树。请输入操作对应的数字。"<<endl;
  do
  {
   cin>>menusel;
   if(menusel=='1'||menusel=='2')
   {
    switch(menusel)
    {
     case '1':     //添加结点到左子树
      if(parent->left)                 //左子树不为空
      {
       cout<<"左子树结点不为空"<<endl;
      }
      else
      {
       parent->left=pnode;
       cout<<"数据添加成功!"<<endl;
      }
      break;
     case '2':     //添加结点到右子树
      if(parent->right)                 //右子树不为空
      {
       cout<<"右子树结点不为空"<<endl;
      }
      else
      {
       parent->right=pnode;
       cout<<"数据添加成功!"<<endl;
      }
      break;
     default:
      cout<<"子节点选择error!"<<endl;
      break;
    }
   }
  }while(menusel!='1'&&menusel!='2');
 }
}
/***********************计算二叉树的深度********************************/
int TreeDepth(CBTType *treeNode)
{
 int depleft,depright;
 if(treeNode==NULL)
 {
  return 0;     //结点为空的时候,深度为0
 }
 else
 {
  depleft=TreeDepth(treeNode->left);  //左子树深度(递归调用)
  depright=TreeDepth(treeNode->right);        //右子树深度(递归调用)
  if(depleft)
  {
   return ++depleft;
  }
  else
  {
   return ++depright;
  }
 }
}
/*************************显示结点数据*********************************/
void ShowNodeData(CBTType *treeNode)
{
 cout<<treeNode->data<<"\t";     //直接输出结点数据
}
/***********************清空二叉树************************************/
void ClearTree(CBTType *treeNode)
{
 if(treeNode)       //判断当前树不为空
 {
  ClearTree(treeNode->left);    //清空左子树
  ClearTree(treeNode->right);    //清空右子树
  delete treeNode;     //释放当前结点所占用的内存 
 }
}
/**************************按层遍历算法*********************************/
void LevelTree(CBTType *treeNode)
{
 CBTType *p;
 CBTType *q[MAXLEN];      //定义一个队列
 int head=0,tail=0;
 if(treeNode)       //如果队首指针不为空
 {
  tail=(tail+1)%MAXLEN;     //计算循环队列队尾序号
  q[tail]=treeNode;     //二叉树根指针进入队列
  while(head!=tail)
  {
   head=(head+1)%MAXLEN;    //计算循环队列的队首序号
   p=q[head];     //获取队首元素
   ShowNodeData(p);    //输出队首元素
   if(p->left!=NULL)    //如果存在左子树
   {
    tail=(tail+1)%MAXLEN;   //计算队列的队尾序号
    q[tail]=p->left;   //左子树入队
   }
   if(p->right!=NULL)    //如果存在右子树
   {
    tail=(tail+1)%MAXLEN;   //计算队列的队尾序号
    q[tail]=p->right;   //右子树入队
   }
  }
 }
}
/*************************先序遍历算法**********************************/
void DLRTree(CBTType *treeNode)
{
 if(treeNode)
 {
  ShowNodeData(treeNode);     //显示结点内容
  DLRTree(treeNode->left);    //显示左子树内容
  DLRTree(treeNode->right);    //显示右子树内容
 }
}
/***********************中序遍历算法************************************/
void LDRTree(CBTType *treeNode)
{
 if(treeNode)
 {

LDRTree(treeNode->left);    //显示左子树内容   
  ShowNodeData(treeNode);     //显示结点内容
  DLRTree(treeNode->right);    //显示右子树内容    
 } 
}
/***********************后序遍历算法************************************/
void LRDTree(CBTType *treeNode)
{
 if(treeNode)
 {
  LRDTree(treeNode->left);    //显示左子树内容 
  DLRTree(treeNode->right);    //显示右子树内容    
  ShowNodeData(treeNode);     //显示结点内容
 } 
}
/*************************主函数部分************************************/
int main()
{
 CBTType *root=NULL;      //root为指向二叉树根结点的指针
 char menusel;
 //设置根结点
 root=InitTree();
 //添加结点
 do
 {
  cout<<"请选择菜单添加二叉树的结点:"<<endl;
  cout<<"0.退出;1.添加二叉树的结点。"<<endl;
  cin>>menusel;
  switch(menusel)
  {
   case '1':
    AddTreeNode(root);
    break;
   case '0':
    break;
   default:
    cout<<"添加结点error"<<endl;
    break;
  }
 }while(menusel!='0');
 //输出树的深度
 cout<<"depth:"<<TreeDepth(root)<<endl;
 //输出结点内容
 do
 {
  cout<<"请选择菜单遍历二叉树,输入0表示退出:"<<endl;
  cout<<"1.按层遍历"<<endl;
  cout<<"2.先序遍历DLR"<<endl;
  cout<<"3.中序遍历LDR"<<endl;
  cout<<"4.后序遍历LRD"<<endl;
  cin>>menusel;
  switch(menusel)
  {
   case '0':break;
    case '1':
     cout<<"按层遍历的结果:"<<endl;
     LevelTree(root);
       cout<<endl;
    break;
   case '2':
    cout<<"先序遍历的结果:"<<endl;
    DLRTree(root);
    cout<<endl;
    break;
   case '3':
    cout<<"中序遍历的结果:"<<endl;
    LDRTree(root);
    cout<<endl;
    break; 
   case '4':
    cout<<"后序遍历的结果:"<<endl;
    LRDTree(root);
    cout<<endl;
    break;
   default:
    cout<<"遍历方式选择出错!"<<endl;
    break;
  }
 }while(menusel!='0');
 //清空二叉树 
 ClearTree(root);
 return 0; 
}

对应的树形结构图如图:

程序运行界面:

(0)

相关推荐

  • C语言/C++中如何产生随机数

    C语言/C++怎样产生随机数:这里要用到的是rand()函数, srand()函数,和time()函数. 需要说明的是,iostream头文件中就有srand函数的定义,不需要再额外引入stdlib.h;而使用time()函数需要引入ctime头文件. 使用rand()函数获取一个随机数如果你只要产生随机数而不需要设定范围的话,你只要用rand()就可以了:rand()会返回一随机数值, 范围在0至RAND_MAX 间.RAND_MAX定义在stdlib.h, 其值为2147483647. 例子

  • c++中的string常用函数用法总结

    标准c++中string类函数介绍 注意不是CString之所以抛弃char*的字符串而选用C++标准程序库中的string类,是因为他和前者比较起来,不必 担心内存是否足够.字符串长度等等,而且作为一个类出现,他集成的操作函数足以完成我们大多数情况下(甚至是100%)的需要.我们可以用 = 进行赋值操作,== 进行比较,+ 做串联(是不是很简单?).我们尽可以把它看成是C++的基本数据类型. 好了,进入正题---首先,为了在我们的程序中使用string类型,我们必须包含头文件 <string>

  • C++常用字符串分割方法实例汇总

    本文实例汇总了C++常用字符串分割方法,分享给大家供大家参考.具体分析如下: 我们在编程的时候经常会碰到字符串分割的问题,这里总结下,也方便我们以后查询使用. 一.用strtok函数进行字符串分割 原型: char *strtok(char *str, const char *delim); 功能:分解字符串为一组字符串. 参数说明:str为要分解的字符串,delim为分隔符字符串. 返回值:从str开头开始的一个个被分割的串.当没有被分割的串时则返回NULL. 其它:strtok函数线程不安全

  • C++解析Json的方法详解【jsoncpp】

    本文实例讲述了C++解析Json的方法.分享给大家供大家参考,具体如下: JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,和xml类似,本文主要对VS2008中使用Jsoncpp解析json的方法做一下记录. Jsoncpp是个跨平台的开源库,下载地址:http://sourceforge.net/projects/jsoncpp/,我下载的是v0.5.0,压缩包大约104K. 方法一:使用Jsoncpp生成的lib文件 解压上面下载的Jsoncpp

  • c++中new的三种用法详细解析

    一. 简介new有三种使用方式:plain new,nothrow new和placement new. (1)plain new顾名思义就是普通的new,就是我们惯常使用的new.在C++中是这样定义的:    void* operator new(std::size_t) throw(std::bad_alloc);    void operator delete(void *) throw(); 提示:plain new在分配失败的情况下,抛出异常std::bad_alloc而不是返回NU

  • 浅析C/C++,Java,PHP,JavaScript,Json数组、对象赋值时最后一个元素后面是否可以带逗号

    1 C,C++,Java,PHP都能容忍末尾的逗号 C,C++,Java中对数组赋值时,最后一个元素末尾的逗号可有可无.下面两行代码对这些语言来说是等效的. int a[] = {1,2,3}; /* 正确 */ int a[] = {1,2,3,}; /* 正确 */ PHP这一点也继承了C的特点,下面的两行代码等效. $a = array(1,2,3); /* 正确 */ $a = array(1,2,3,); /* 正确 */ 2 JavaScript视末尾逗号为语法错误! 然而到了Jav

  • 详解C++的JSON静态链接库JsonCpp的使用方法

    JsonCpp部署方法: 在http://sourceforge.net/projects/jsoncpp/中下载最新版本的jsoncpp库源码. 之后将jsoncpp-src-版本号-tar.gz解压出来,打开makefiles中的jsoncpp.sln进行编译,之后build文件夹下的vs71\debug\lib_json中会有一个.lib静态链接库. JsonCpp主要包含三种类型的class:Value Reader Writer. jsoncpp中所有对象.类名都在namespace

  • C++运算符重载的方法详细解析

    运算符重载实质上是函数的重载 重载运算符的函数一般格式如下: 函数类型    operator  运算符名称    (形参表列) {对运算符的重载处理} 例如,想将"+"用于Complex(复数)的加法运算,函数的原型可以是这样的: 复制代码 代码如下: Complex operator + (Complex & c1,Complex &c2); 其中,operator是关键字,时候专门用于定义重载运算符的函数的,运算符名称就是C++提供给用户的预定运算符. 注意:函数

  • C++二叉树结构的建立与基本操作

    准备数据定义二叉树结构操作中需要用到的变量及数据等. 复制代码 代码如下: #define MAXLEN 20    //最大长度typedef char DATA;    //定义元素类型struct  CBTType                   //定义二叉树结点类型 { DATA data;           //元素数据  CBTType * left;    //左子树结点指针  CBTType * right;   //右子树结点指针 }; 定义二叉树结构数据元素的类型DA

  • C语言数据结构 双向链表的建立与基本操作

    C语言数据结构 双向链表的建立与基本操作 双向链表比单链表有更好的灵活性,其大部分操作与线性表相同.下面总结双向链表与单链表之间的不同之处及我在实现过程中所遇到的问题. 1.双向链表的建立 双向链表在初始化时,要给首尾两个节点分配内存空间.成功分配后,要将首节点的prior指针和尾节点的next指针指向NULL,这是十分关键的一步,因为这是之后用来判断空表的条件.同时,当链表为空时,要将首节点的next指向尾节点,尾节点的prior指向首节点. 2.双向链表的插入操作 由于定义双向链表时指针域中

  • C++基于递归和非递归算法判定两个二叉树结构是否完全相同(结构和数据都相同)

    本文实例讲述了C++基于递归和非递归算法判定两个二叉树结构是否完全相同.分享给大家供大家参考,具体如下: /*两个二叉树结构是否相同(结构和数据都相同) -- 递归和非递归方法 经调试可运行源码及分析如下: ***/ #include <stdlib.h> #include <iostream> #include <queue> using std::cout; using std::cin; using std::endl; using std::queue; /*二

  • Python数据结构与算法之二叉树结构定义与遍历方法详解

    本文实例讲述了Python数据结构与算法之二叉树结构定义与遍历方法.分享给大家供大家参考,具体如下: 先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历  采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # 访问结点,遍历左子树,如果左子树为空,则遍历右子树, # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程 preorder(t): if t: print t.value preorde

  • 教你如何使用Python实现二叉树结构及三种遍历

    一:代码实现 class TreeNode: """节点类""" def __init__(self, mid, left=None, right=None): self.mid = mid self.left = left self.right = right # 树类 class Tree: """树类""" def __init__(self, root=None): self.r

  • C语言 链式二叉树结构详解原理

    目录 前言 二叉树节点声明 二叉树的遍历 构建二叉树 1.前序遍历 2.中序遍历 3.后序遍历 二叉树节点的个数 二叉树叶子节点的个数 二叉树第K层节点个数 二叉树的高度/深度 二叉树查找值为x的节点 整体代码 前言 二叉树不同于顺序表,一颗普通的二叉树是没有增删改查的意义.普通的二叉树用来存储数据是不方便的.但是二叉树的一些基本实现结构,例如前序遍历,中序遍历...等等都是对我们学习更深层次的二叉树打下夯实的基础. 二叉树节点声明 typedef char BTDataType; typede

  • Python 二叉树的层序建立与三种遍历实现详解

    前言 二叉树(Binary Tree)时数据结构中一个非常重要的结构,其具有....(此处省略好多字)....等的优良特点. 之前在刷LeetCode的时候把有关树的题目全部跳过了,(ORZ:我这种连数据结构都不会的人刷j8Leetcode啊!!!) 所以 !!!敲黑板了!!!今天我就在B站看了数据结构中关于树的内容后,又用我浅薄的Python大法来实现一些树的建立和遍历. 关于树的建立我觉得层序建立对于使用者来说最为直观,输入很好写.(好吧,我是看LeetCode中的树输入都是采用层序输入觉得

  • Python实现二叉树结构与进行二叉树遍历的方法详解

    二叉树的建立 使用类的形式定义二叉树,可读性更好 class BinaryTree: def __init__(self, root): self.key = root self.left_child = None self.right_child = None def insert_left(self, new_node): if self.left_child == None: self.left_child = BinaryTree(new_node) else: t = BinaryTr

  • Go 语言结构体链表的基本操作

    目录 1. 什么是链表 2. 单项链表的基本操作 3. 使用 struct 定义单链表 4. 尾部添加节点方法一 5. 头部插入节点方法一 6. 指定节点后添加新节点 7. 删除节点 1. 什么是链表 链表是一种物理存储单元上非连续.非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的. 链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成.每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域. 使用链表结构可以避免在使用数组

  • C++中单链表的建立与基本操作

    准备数据 准备在链表操作中需要用到的变量及数据结构 示例代码如下: 复制代码 代码如下: struct Data   //数据结点类型 { string key;  //关键字  string name; int age;};struct CLType  //定义链表结构 { Data nodeData; Data *nextNode;}; 定义了链表数据元素的类型Data以及链表的数据结构CLType.结点的具体数据保存在一个结构Data中,而指针nextNode用来指向下一个结点. 我们可以

随机推荐