C语言中实现KMP算法的实例讲解

一般的算法为什么这么低效呢?那是因为主串指针回溯情况过多:
主串指针如果不回溯的话,速度就会加快,那我们就会想:
如何让主串指针不回溯?
KMP算法就是解决了这个问题,所以速度变得更快速了。
它是这样子的:
用一个数组:next[] 求得失配时的位置,然后保存下来。
要说清楚KMP算法,可以从朴素的模式匹配算法说起。 
朴素的模式匹配算法比较容易理解,其实现如下

 int  Index(char  s[],  char  p[],  int  pos)
 {
  int  i,  j,  slen,  plen;
  i  =  pos;
  j  =  0;
  slen  =  strlen(s);
  plen  =  strlen(p);
  while((i  <  slen)  &&  (j  <  plen))
  {
   if((s[i]  ==  p[j]))
   {
    i++;
    j++;
   }
   else
   {
    i  =  i-j+1;
    j  =  0;
   }
  }
  if(j  >=  plen)
  {
   return  (i-plen);
  }
  else
  {
   return  -1;
  }
 }

可见,在朴素的模式匹配算法中,当模式中的p[j]与主串中的s[i]不匹配时,需要把主串的指针回溯到i-j+1的地方从新用s[i-j+1]跟p[0]进行匹配比较。KMP算法的想法是,能不能不回溯主串的指针呢?这种想法基于如下事实的:p[j]!=s[i]前,p[0]~p[j-1]跟s[i-j]~s[i-1]是匹配的(这里j>0,也就是说在不匹配前已经有匹配的字符了。否则如果j=0,则主串指针肯定不用回溯,直接向前变成i+1再跟p[0]比较就是了) 
  
p[j]!=s[i]前,p[0]~p[j-1]跟s[i-j]~s[i-1]是匹配的,这说明了什么呢?这说明可以通过分析模式的p[0]~p[j-1]来分析s[i-j]~s[i-1]。如果模式中存在p[0]~p[k-1]=p[j-k]~p[j-1](共k个匹配的字符,且k是满足这个关系的最大值),则可以知道s[i-k]~s[j-1]跟[0]~p[k-1]是匹配的,那么,s[i]只需要跟p[k]进行比较就行了。而这个k是跟主串无关的,只需要分析模式串就可以求出来(这就是普通的教材中next[j]=k这个假设的由来,普通教材中总喜欢假设这个k值已经有了,如果你逻辑思维强还没有什么,不然或多或少会把你卡在这的)。亦即next[j]=k。 
  
如果上述的p[0]~p[k-1]=p[j-k]~p[j-1]串不存在会怎么样呢?这说明p[j]前的串中不存在p[0]...=...p[j-1]的情况,就连p[0]也不等于p[j-1],也就是说p[0]~p[j-1]中所有以p[j-1]为结尾的子串跟模式p都是失配的。基于上面p[0]~p[j-1]=s[i-j]~s[i-1]的事实,可以断定s[i-j]~s[i-1]中所有以s[i-1]结尾的子串跟模式p都是失配,这说明把主串的指针回溯到i-j+1~i-1都是没有必要的,既然没有必要回溯,而s[i]!=p[j],则s[i只能跟p[0]进行比较匹配了。亦即next[j]=0。 
  
特殊情况下,j=0,即s[i]!=p[0],这时不用再用s[i]来跟p中的其它字符比较了,变成用s[i+1]跟p[0]进行比较。为了统一,可以让next[0]=-1。在下一轮的比较中,判断到j=-1的情况时,让i=i+1,j=j+1,自然就形成s[i+1]跟p[0]比较的效果了。  
 
KMP算法实现示例

具体请看如下程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX 101

void get_next( int *next,char *a,int la) /*求NEXT[]的值*/
{
   int i=1,j=0 ;
   next[1] = 0 ;

   while ( i <= la) /*核心部分*/
   {
      if( a[i] == a[j] || j == 0 )
      {
        j ++ ;
        i ++ ;
        if( a[i] == a[j])
        next[i] = next[j];
        else
        next[i] = j ;
      }
      else
      j = next[j] ;
   }
}

int str_kmp( int *next, char *A ,char *a, int lA,int la)/* EASY*/
{
   int i,j,k ;
   i = 1 ;
   j = 1 ;
   while ( i<=lA && j <= la )
   {
      if(A[i] == a[j] || j == 0 )
      {
          i ++ ;
          j ++ ;
      }
      else
      j = next[j] ;
   }

   if ( j> la)
   return i-j+1 ;
   else
   return -1 ;
}

int main(void)
{
  int n,k;
  int next[MAX]={0} ;
  int lA=0,la =0 ;
  char A[MAX],a[MAX] ;
  scanf("%s %s",A,a) ;

  lA = strlen(A);
  la = strlen(a);
  for(k=la-1; k>= 0 ;k --)
  a[k+1] = a[k] ;
  for(k=lA-1; k>= 0 ;k --)
  A[k+1] = A[k] ;

  get_next(next,a,la) ;
  k = str_kmp(next,A,a,lA,la);
  if ( -1 == k)
  printf("Not Soulation!!! ");
  else
  printf("%d ",k) ;
  system("pause");

  return 0 ;
}
(0)

相关推荐

  • C++ 数据结构之kmp算法中的求Next()函数的算法

    C++ 数据结构之kmp算法中的求Next()函数的算法 实例代码: #include <iostream> using namespace std; void preKmp(char *c, int m, int Next[]) { int i=1,j=-1; Next[0]=-2; while(i<m) { if(j==-2) { Next[i]=-1; i++; j=-1; } ++j; if(i==m) return; if(c[i]==c[j]) { Next[i]=j; ++

  • C语言kmp算法简单示例和实现原理探究

    以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下"奥,它是做模式匹配的"这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(下不说程序实现,思想很简单). 模式匹配的经典应用:从一个字符串中找到模式字串的位置.如"abcdef"中"cde"出现在原串第三个位置.从基础看起 朴素的模式匹配算法 A:abcdefg  B:cde 首先B从A的第一位开始比较,B++==A++,如果全

  • KMP算法精解及其Python版的代码示例

    KMP算法是经典的字符串匹配算法,解决从字符串S,查找模式字符串M的问题.算法名称来源于发明者Knuth,Morris,Pratt. 假定从字符串S中查找M,S的长度ls,M的长度lm,且(ls > lm). 朴素的字符串查找方法 从字符串S的第一个字符开始与M进行比较,如果匹配失败.从下一字符开始,重新比较.指导第 (ls - lm) 个字符. 这种方法容易想到并且容易理解,效率不高. 问题在于每次匹配失败后,移动的步伐固定为 1,其实步子可以迈得再大一些. KMP的字符串查找方法 假定在模式

  • 字符串的模式匹配详解--BF算法与KMP算法

    一.BF算法     BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符:若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果. 举例说明: S: ababcababa P: ababa BF算法匹配的步骤如下 i=0 i=1 i=2 i=3 i=4 第一趟:ababcababa 第二趟:ababcababa 第三趟:ababcababa 第四趟:ababcabab

  • KMP算法的C#实现方法

    本文实例简述了KMP算法的C#实现方法,分享给大家供大家参考.具体如下: 具体思路为:next函数求出模式串向右滑动位数,再将模式串的str的next函数值 存入数组next. 具体实现代码如下: static void GetNextVal(string str, int [] next) { int i = 0; int j = -1; next[0] = -1; while (i < str.Length - 1) { if (j == -1 || str[i] == str[j]) {

  • Python字符串匹配算法KMP实例

    本文实例讲述了Python字符串匹配算法KMP.分享给大家供大家参考.具体如下: #!/usr/bin/env python #encoding:utf8 def next(pattern): p_len = len(pattern) pos = [-1]*p_len j = -1 for i in range(1, p_len): while j > -1 and pattern[j+1] != pattern[i]: j = pos[j] if pattern[j+1] == pattern

  • KMP 算法实例详解

    KMP 算法实例详解 KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化,是一个非常优秀的模式匹配算法. 分析:KMP模板题.KMP的关键是求出next的值.先预处理出next的值.然后一遍扫过.复杂度O(m+n) 实例代码: #include<stdio.h> #include<string.h> #define N 1000005 int s[N]; int p[N]; int n

  • 快速模式匹配算法(KMP)的深入理解

    恐怕现在用过电脑的人,一定都知道大部分带文本编辑功能的软件都有一个快捷键ctrl+f 吧(比如word).这个功能主要来完成"查找","替换"和"全部替换"功能的,其实这就是典型的模式匹配的应用,即在文本文件中查找串.1.模式匹配模式匹配的模型大概是这样的:给定两个字符串变量S和P,其中S成为目标串,其中包含n个字符,P称为模式串,包含m个字符,其中m<=n.从S的给定位置(通常是S的第一个位置)开始搜索模式P.如果找到,则返回模式P在目标

  • java 中模式匹配算法-KMP算法实例详解

    java 中模式匹配算法-KMP算法实例详解 朴素模式匹配算法的最大问题就是太低效了.于是三位前辈发表了一种KMP算法,其中三个字母分别是这三个人名的首字母大写. 简单的说,KMP算法的对于主串的当前位置不回溯.也就是说,如果主串某次比较时,当前下标为i,i之前的字符和子串对应的字符匹配,那么不要再像朴素算法那样将主串的下标回溯,比如主串为"abcababcabcabcabcabc",子串为"abcabx".第一次匹配的时候,主串1,2,3,4,5字符都和子串相应的

  • JavaScript中数据结构与算法(五):经典KMP算法

    KMP算法和BM算法 KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同 前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从 左到右 后缀匹配是指:模式串和母串的的比较从右到左,模式串的移动从左到右. 通过上一章显而易见BF算法也是属于前缀的算法,不过就非常霸蛮的逐个匹配的效率自然不用提了O(mn),网上蛋疼的KMP是讲解很多,基本都是走的高大上路线看的你也是一头雾水,我试图用自己的理解用最接地气的方式描述 KMP KMP也是一种优化版的

随机推荐