Java中的多线程一定就快吗?

并发编程与多线程编程

要了解并发编程,首先要懂得与并行这个概念进行区分。并行是指两个事件同时进行,并发是CPU切换速度快,看起来像是每个任务同时进行一样。多线程是实现并发编程的一种方式,假设一个场景,在广州地铁高峰时段,一群人涌进地铁里,在不同的闸机口刷卡进去。在这个场景里,进地铁就是任务,每个人可以看出是并发的,而多个刷卡闸机口就是多线程。

  并发编程的本质目的是为了充分利用CPU,让程序运行得更快。然而,并不是启动更多的线程就能让程序最大限度地并发执行。在进行并发编程时,如果希望通过多线程执行任务让程序运行得更快,会面临非常多的挑战。比如上下文切换的问题、死锁的问题,以及受限于硬件和软件的资源限制问题,下面就来唠嗑唠嗑这些因素。

上下文切换

原理分析

正如上面所言,并发与并行最大的区别就是,并发只是看起来像是并行。实际上是,CPU通过给每个线程分配时间来执行这个线程的程序,只是这个时间非常短,通常是几十毫秒,我们根本无法观察到变化,感觉它们都是同时执行的一样。

  CPU通过时间片分配算法来循环执行任务,当前任务执行一个时间片后会切换到下一个任务。但是,在切换前会保存上一个任务的状态,以便下次切换回这个任务时,可以再加载这个任务的状态。所以任务从保存到再加载的过程就是一次上下文切换。因此,不难得知,上下文切换需要耗费不少时间。

  再来假设一个场景,一个人去火车站买票,买票的窗口有十来个那么多。买票的人并不知道哪个窗口可以买到票,只能挨个地问,最后终于在最后一个窗口买到了。这个场景,看似买票的过程很长,其实大部分时间都在切换窗口上,这也就是上下文切换的问题所在。因此,并非线程数多就一定执行得快,要选择与任务相适应的线程数才是最佳方案。

测试代码

package Concurrency;

/**
 * @author RuiMing Lin
 * @date 2020-03-28 12:19
 */
public class Demo1 {
  public static void main(String[] args) {
    System.out.println("万级循环:");
    concurrency(10000);
    serial(10000);
    System.out.println("--------------------------华丽分隔符--------------------------------");
    System.out.println("十万级循环:");
    concurrency(100000);
    serial(100000);
    System.out.println("--------------------------华丽分隔符--------------------------------");
    System.out.println("百万级循环:");
    concurrency(1000000);
    serial(1000000);
    System.out.println("--------------------------华丽分隔符--------------------------------");
    System.out.println("千万级循环:");
    concurrency(10000000);
    serial(10000000);
    System.out.println("--------------------------华丽分隔符--------------------------------");
    System.out.println("亿级循环:");
    concurrency(100000000);
    serial(100000000);
  }

  private static void concurrency(long count){
    // 开启三个线程执行三个循环
    long start = System.currentTimeMillis();
    new Thread(new Runnable() {
      @Override
      public void run() {
        int a = 0;
        for (long i = 0; i < count; i++) {
          a++;
        }
      }
    }).start();
    new Thread(new Runnable() {
      @Override
      public void run() {
        int b = 0;
        for (long i = 0; i < count; i++) {
          b++;
        }
      }
    }).start();
    new Thread(new Runnable() {
      @Override
      public void run() {
        int c = 0;
        for (long i = 0; i < count; i++) {
          c++;
        }
      }
    }).start();
    long end = System.currentTimeMillis();
    long time = end - start;
    System.out.println("并行执行花费时间为:" + time + "ms");
  }

  private static void serial(long count){
    // 三个循环顺序执行
    long start = System.currentTimeMillis();
    int a = 0;
    int b = 0;
    int c = 0;
    for (int i = 0; i < count; i++) {
      a++;
    }
    for (int i = 0; i < count; i++) {
      b++;
    }
    for (int i = 0; i < count; i++) {
      c++;
    }
    long end = System.currentTimeMillis();
    long time = end - start;
    System.out.println("串行执行花费时间为:" + time + "ms");
  }
}

结果输出:

万级循环: 并行执行花费时间为:4ms 串行执行花费时间为:1ms

--------------------------华丽分隔符--------------------------------

十万级循环: 并行执行花费时间为:1ms 串行执行花费时间为:4ms

--------------------------华丽分隔符--------------------------------

百万级循环: 并行执行花费时间为:1ms 串行执行花费时间为:10ms

--------------------------华丽分隔符--------------------------------

千万级循环: 并行执行花费时间为:1ms 串行执行花费时间为:36ms

--------------------------华丽分隔符--------------------------------

亿级循环: 并行执行花费时间为:1ms 串行执行花费时间为:357ms

分析结果:

当数量级在万级时,串行是比并发要快的,当数量级来到十万以后,串行便显得力不从心了。所以,可以认为当程序执行量不够大时,是没必要开启多线程的。

如何减少上下文切换

减少上下文切换的方法有无锁并发编程、CAS算法、使用最少线程和使用协程。

  1. 无锁并发编程。多线程竞争锁时,会引起上下文切换,所以多线程处理数据时,可以用一些办法来避免使用锁,如将数据的ID按照Hash算法取模分段,不同的线程处理不同段的数据。
  2. CAS算法。Java的Atomic包使用CAS算法来更新数据,而不需要加锁。
  3. 使用最少线程。避免创建不需要的线程,比如任务很少,但是创建了很多线程来处理,这样会造成大量线程都处于等待状态。
  4. 协程:在单线程里实现多任务的调度,并在单线程里维持多个任务间的切换。

死锁

原理分析

 死锁,是指多个线程在运行过程中因争夺相同资源而造成的一种僵局,当进程处于这种僵持状态时,它们都将无法再向前推进,此时程序就处于瘫痪状态,无法执行。 通常情况下,是多个线程共同竞争同一把锁对象,而其中一个线程获得锁之后发生异常等未来得及释放锁,导致其它线程一直在等待,无法运行。

测试代码

package Concurrency;

/**
 * @author RuiMing Lin
 * @date 2020-03-28 13:14
 */
public class Demo2 {
  private static String str1 = "A";
  private static String str2 = "B";

  public static void main(String[] args) {
    new Thread(new Runnable() {
      @Override
      public void run() {
        synchronized (str1){
          System.out.println("第一个线程获得str1");
          try {
            Thread.currentThread().sleep(2000);
          }catch (InterruptedException e){
            e.printStackTrace();
          }
          synchronized (str2){
            System.out.println("第一个线程获得str2");
          }
        }
      }
    }).start();

    new Thread(new Runnable() {
      @Override
      public void run() {
        synchronized (str2){
          System.out.println("第二个线程获得str2");
          try {
            Thread.currentThread().sleep(2000);
          }catch (InterruptedException e){
            e.printStackTrace();
          }
          synchronized (str1){
            System.out.println("第二个线程获得str1");
          }
        }
      }
    }).start();
  }
}

结果输出:

如何解决死锁

  1. 避免一个线程同时获取多个锁。
  2. 避免一个线程在锁内同时占用多个资源,尽量保证每个锁只占用一个资源。
  3. 尝试使用定时锁,使用lock.tryLock(timeout)来替代使用内部锁机制。
  4. 对于数据库锁,加锁和解锁必须在一个数据库连接里,否则会出现解锁失败的情况。

总结

并发程序并不是简单的程序,编写的时候应该严谨一些。复杂的代码容易引起死锁,因此,建议多使用JDK并发包提供的并发容器和工具类来解决并发问题。同时,也要注重新能上的问题,既要考虑到程序执行任务量,也要考虑CPU性能等等,不要一昧地增加线程数。

以上就是Java中的多线程一定就快吗?的详细内容,更多关于Java 多线程的资料请关注我们其它相关文章!

(0)

相关推荐

  • 基于Java实现多线程下载并允许断点续传

    完整代码:https://github.com/iyuanyb/Downloader 多线程下载及断点续传的实现是使用 HTTP/1.1 引入的 Range 请求参数,可以访问Web资源的指定区间的内容.虽然实现了多线程及断点续传,但还有很多不完善的地方. 包含四个类: Downloader: 主类,负责分配任务给各个子线程,及检测进度DownloadFile: 表示要下载的哪个文件,为了能写输入到文件的指定位置,使用 RandomAccessFile 类操作文件,多个线程写同一个文件需要保证线

  • Java多线程通信wait()和notify()代码实例

    1.wait()方法和sleep()方法: wait()方法在等待中释放锁:sleep()在等待的时候不会释放锁,抱着锁睡眠. 2.notify(): 随机唤醒一个线程,将等待队列中的一个等待线程从等待队列中移到同步队列中. 代码如下 public class Demo_Print { public static void main(String[] args) { Print p = new Print(); new Thread() { public void run() { while (

  • Java多线程并发执行demo代码实例

    主类:MultiThread,执行并发类 package java8test; import java.util.ArrayList; import java.util.List; import java.util.concurrent.BlockingQueue; import java.util.concurrent.Callable; import java.util.concurrent.CountDownLatch; import java.util.concurrent.Execut

  • Java多线程Callable和Future接口区别

    Runnable是执行工作的独立任务,但是不返回任何值.如果我们希望任务完成之后有返回值,可以实现Callable接口.在JavaSE5中引入的Callable是一个具有类型参数的范型,他的类型参数方法表示为方法call()而不是run()中返回的值,并且必须使用ExecutorService.submint()方法进行调用. 代码如下 import java.util.concurrent.Callable; import java.util.concurrent.ExecutionExcep

  • 浅谈Java获得多线程的返回结果方式(3种)

    一:Java创建线程方式 继承Thread类或者实现Runnable接口. 但是Runnable 的 run() 方法是不带返回值的,那如果我们需要一个耗时任务在执行完之后给予返回值,应该怎么做呢? 第一种方法:在 Runnable 的实现类中设置一个变量 V,在 run 方法中将其改变为我们期待的结果,然后通过一个 getV() 方法将这个变量返回. package com.test.thread; import java.util.*; import sun.swing.Accumulati

  • 深入分析JAVA 多线程--interrupt()和线程终止方式

    一.interrupt() 介绍 interrupt() 定义在 Thread 类中,作用是中断本线程. 本线程中断自己是被允许的:其它线程调用本线程的 interrupt() 方法时,会通过 checkAccess() 检查权限.这有可能抛出 SecurityException 异常. 如果本线程是处于阻塞状态:调用线程的 wait() , wait(long) 或 wait(long, int) 会让它进入等待(阻塞)状态,或者调用线程的 join(),join(long),join(lon

  • Java多线程锁机制相关原理实例解析

    上下文:程序运行需要的环境(外部变量) 上下文切换:将之前的程序需要的外部变量复制保存,然后切换到新的程序运行环境 系统调用:(用户态陷入操作系统,通过操作系统执行内核态指令,执行完回到用户态)用户态--内核态--用户态:两次上下文切换 线程wait()方法:将自身加入等待队列,发生了一次上下文切换 notify()方法:将线程唤醒,也发生了上下文切换 Java线程中的锁:偏向锁.轻量级锁.重量级锁. 注意:偏向锁和轻量级锁都没有发生竞争,重量级锁发生了竞争. 偏向锁:可重入和经常使用某一个线程

  • Java Lambda表达式原理及多线程实现

    1.使用Lambda表达式实现多线程 public static void main(String[] args) { //使用匿名内部类的方式,实现多线程 new Thread(new Runnable() { @Override public void run() { System.out.println(Thread.currentThread().getName() + "新线程创建了!"); } }).start(); //使用Lambda表达式,实现多线程 new Thre

  • Java实现多线程同步五种方法详解

    一.为什么要线程同步 因为当我们有多个线程要同时访问一个变量或对象时,如果这些线程中既有读又有写操作时,就会导致变量值或对象的状态出现混乱,从而导致程序异常.举个例子,如果一个银行账户同时被两个线程操作,一个取100块,一个存钱100块.假设账户原本有0块,如果取钱线程和存钱线程同时发生,会出现什么结果呢?取钱不成功,账户余额是100.取钱成功了,账户余额是0.那到底是哪个呢?很难说清楚.因此多线程同步就是要解决这个问题. 二.不同步时的代码 Bank.java package threadTe

  • 详解Java Callable接口实现多线程的方式

    在Java 1.5以前,创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口.无论我们以怎样的形式实现多线程,都需要调用Thread类中的start方法去向操作系统请求io,cup等资源.因为线程run方法没有返回值,如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. Callable和Future介

  • Java Lock锁多线程中实现流水线任务

    下面程序代码通过使用Lock锁执行简单的流水线任务: import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * @author lzq * @data 2020/4/29 0029 - 下午 9:48 */ public class TestLock { public stat

  • Java多线程中Lock锁的使用总结

    多核时代 摩尔定律告诉我们:当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍.换言之,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上.然而最近摩尔定律似乎遇到了麻烦,目前微处理器的集成度似乎到了极限,在目前的制造工艺和体系架构下很难再提高单个处理器的速度了,否则它就被烧坏了.所以现在的芯片制造商改变了策略,转而在一个电路板上集成更多的处理器,也就是我们现在常见的多核处理器. 这就给软件行业带来麻烦(也可以说带来机会,比如说就业机会,呵呵).原来的情况

  • 实例代码讲解JAVA多线程

    进程与线程 进程是程序的一次动态执行过程,它需要经历从代码加载,代码执行到执行完毕的一个完整的过程,这个过程也是进程本身从产生,发展到最终消亡的过程.多进程操作系统能同时达运行多个进程(程序),由于 CPU 具备分时机制,所以每个进程都能循环获得自己的CPU 时间片.由于 CPU 执行速度非常快,使得所有程序好像是在同时运行一样. 多线程是实现并发机制的一种有效手段.进程和线程一样,都是实现并发的一个基本单位.线程是比进程更小的执行单位,线程是进程的基础之上进行进一步的划分.所谓多线程是指一个进

  • Java多线程及线程安全实现方法解析

    一.java多线程实现的两种方式 1.继承Thread /** * * @version: 1.1.0 * @Description: 多线程 * @author: wsq * @date: 2020年6月8日下午2:25:33 */ public class MyThread extends Thread{ @Override public void run() { System.out.println("This is the first thread!"); } public s

  • Java多线程生产者消费者模式实现过程解析

    单生产者与单消费者 示例: public class ProduceConsume { public static void main(String[] args) { String lock = new String(""); Produce produce = new Produce(lock); Consume consume = new Consume(lock); new Thread(() -> { while (true) { produce.setValue();

随机推荐