python使用opencv对图像添加噪声(高斯/椒盐/泊松/斑点)

目录
  • 1、高斯噪声
  • 2、椒盐噪声
  • 3、泊松噪声
  • 4、speckle噪声

导读:

这篇文章主要介绍如何利用opencv来对图像添加各类噪声,原图:

1、高斯噪声

高斯噪声就是给图片添加一个服从高斯分布的噪声,可以通过调节高斯分布标准差(sigma)的大小来控制添加噪声程度,sigma越大添加的噪声越多图片损坏的越厉害

#读取图片
img = cv2.imread("demo.png")
#设置高斯分布的均值和方差
mean = 0
#设置高斯分布的标准差
sigma = 25
#根据均值和标准差生成符合高斯分布的噪声
gauss = np.random.normal(mean,sigma,(img_height,img_width,img_channels))
#给图片添加高斯噪声
noisy_img = image + gauss
#设置图片添加高斯噪声之后的像素值的范围
noisy_img = np.clip(noisy_img,a_min=0,a_max=255)
#保存图片
cv2.imwrite("noisy_img.png",noise_img)

2、椒盐噪声

椒盐噪声就是给图片添加黑白噪点,椒指的是黑色的噪点(0,0,0)盐指的是白色的噪点(255,255,255),通过设置amount来控制添加噪声的比例,值越大添加的噪声越多,图像损坏的更加严重

#读取图片
img = cv2.imread("demo.png")
#设置添加椒盐噪声的数目比例
s_vs_p = 0.5
#设置添加噪声图像像素的数目
amount = 0.04
noisy_img = np.copy(image)
#添加salt噪声
num_salt = np.ceil(amount * image.size * s_vs_p)
#设置添加噪声的坐标位置
coords = [np.random.randint(0,i - 1, int(num_salt)) for i in image.shape]
noisy_img[coords] = 255
#添加pepper噪声
num_pepper = np.ceil(amount * image.size * (1. - s_vs_p))
#设置添加噪声的坐标位置
coords = [np.random.randint(0,i - 1, int(num_pepper)) for i in image.shape]
noisy_img[coords] = 0
#保存图片
cv2.imwrite("noisy_img.png",noise_img)

3、泊松噪声

#读取图片
img = cv2.imread("demo.png")
#计算图像像素的分布范围
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
#给图片添加泊松噪声
noisy_img = np.random.poisson(image * vals) / float(vals)
#保存图片
cv2.imwrite("noisy_img.png",noise_img)

4、speckle噪声

#读取图片
img = cv2.imread("demo.png")
#随机生成一个服从分布的噪声
gauss = np.random.randn(img_height,img_width,img_channels)
#给图片添加speckle噪声
noisy_img = image + image * gauss
#归一化图像的像素值
noisy_img = np.clip(noisy_img,a_min=0,a_max=255)
#保存图片
cv2.imwrite("noisy_img.png",noise_img)

到此这篇关于python使用opencv对图像添加噪声(高斯/椒盐/泊松/斑点)的文章就介绍到这了,更多相关python使用opencv内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python OpenCV机器学习之图像识别详解

    目录 背景 一.人脸识别 二.车牌识别 三.DNN图像分类 背景 OpenCV中也提供了一些机器学习的方法,例如DNN:本篇将简单介绍一下机器学习的一些应用,对比传统和前沿的算法,能从其中看出优劣: 一.人脸识别 主要有以下两种实现方法: 1.哈尔(Haar)级联法:专门解决人脸识别而推出的传统算法: 实现步骤: 创建Haar级联器: 导入图片并将其灰度化: 调用函数接口进行人脸识别: 函数原型: detectMultiScale(img,scaleFactor,minNeighbors) sc

  • Python OpenCV超详细讲解图像堆叠的实现

    目录 准备工作 水平堆叠 垂直堆叠 图像栈堆叠 准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库,import numpy并且重命名为np. import cv2 import numpy as np 我们还要知道在OpenCV中,坐标轴的方向是x轴向右,y轴向下,坐标原点在左上角,比如下面这张长为640像素,宽为480像素的图片.OK,下面开始本节的学习吧. 水平堆叠 调用np的hstack()水平堆栈方法,参数是我们要

  • Python Opencv基于透视变换的图像矫正

    本文实例为大家分享了Python Opencv基于透视变换的图像矫正,供大家参考,具体内容如下 一.自动获取图像顶点变换(获取图像轮廓顶点矫正) 图像旋转校正思路如下 1.以灰度图读入2.腐蚀膨胀,闭合等操作3.二值化图像4.获取图像顶点5.透视矫正 #(基于透视的图像矫正) import cv2 import math import numpy as np def Img_Outline(input_dir):     original_img = cv2.imread(input_dir)

  • Python+OpenCV实现在图像上绘制矩形

    话不多说,直接上代码 import copy import cv2 import numpy as np WIN_NAME = 'draw_rect' class Rect(object): def __init__(self): self.tl = (0, 0) self.br = (0, 0) def regularize(self): """ make sure tl = TopLeft point, br = BottomRight point ""

  • 关于python3 opencv 图像二值化的问题(cv2.adaptiveThreshold函数)

    前一篇研究了opencv二值化方法threshold的使用,但是这个方法也存在一定的局限性,假如有一张图存在明显的明暗不同的区域,如下图 可以看到左边部分因为整体偏暗,导致二值化后变成全黑,丢失了所有细节,这显然不是我们想要的结果. 原因threshold函数使用一个阈值对图像进行二值化,导致小于这个阈值的像素点全都变成0.因此使用一个阈值的二值化方法并不适用于上面的这张图.那怎么搞? 很明显,上面这张图只有左右两个区域明显亮度不同,最简单的方法就是把图分成两个区域,每个区域分别进行二值化,也就

  • python opencv 图像边框(填充)添加及图像混合的实现方法(末尾实现类似幻灯片渐变的效果)

    图像边框的实现 图像边框设计的主要函数 cv.copyMakeBorder()--实现边框填充 主要参数如下: 参数一:源图像--如:读取的img 参数二--参数五分别是:上下左右边的宽度--单位:像素 参数六:边框类型: cv.BORDER_CONSTANT--cv.BORDER_REPLICATE--cv.BORDER_REFLECT--cv.BORDER_WRAP--cv.BORDER_REFLECT_101--cv.BORDER_TRANSPARENT--cv.BORDER_REFLEC

  • Python OpenCV超详细讲解读取图像视频和网络摄像头

    0.准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库. 1.读取图像调用imread()方法获取我们资源文件夹中的图片使用imshow()方法显示图片,窗口名称为OutputwaitKey(0)这句可以让窗口一直保持,如果去掉这句,窗口会一闪而过 我们来看下效果: 2.读取视频VideoCapture()方法的参数就是视频文件循环中通过read不断地去读视频的每一帧,再通过imshow显示出来最后if语句代表按q可以退出程

  • Python OpenCV超详细讲解调整大小与图像操作的实现

    目录 准备工作 重新调整图像大小 图像裁剪 准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库. 我们还要知道在OpenCV中,坐标轴的方向是x轴向右,y轴向下,坐标原点在左上角,比如下面这张长为640像素,宽为480像素的图片.OK,下面开始本节的学习吧. 查看图像大小 调用imread()方法获取我们资源文件夹中的图片lambo.png 输出图像的shape属性 img=cv2.imread("Resources/lam

  • python使用opencv对图像添加噪声(高斯/椒盐/泊松/斑点)

    目录 1.高斯噪声 2.椒盐噪声 3.泊松噪声 4.speckle噪声 导读: 这篇文章主要介绍如何利用opencv来对图像添加各类噪声,原图: 1.高斯噪声 高斯噪声就是给图片添加一个服从高斯分布的噪声,可以通过调节高斯分布标准差(sigma)的大小来控制添加噪声程度,sigma越大添加的噪声越多图片损坏的越厉害 #读取图片 img = cv2.imread("demo.png") #设置高斯分布的均值和方差 mean = 0 #设置高斯分布的标准差 sigma = 25 #根据均值

  • 如何利用python正确地为图像添加高斯噪声

    目录 彩图or灰度图 uint8orfloat64 方差or标准差 是否截断(clip) 总结 参考 开门见山,直接使用 skimage 库为图像添加高斯噪声是很简单的: import skimage origin = skimage.io.imread("./lena.png") noisy = skimage.util.random_noise(origin, mode='gaussian', var=0.01) 但是如果不用库函数而自己实现的话,有几个问题是值得注意的. 彩图 o

  • python 用opencv实现图像修复和图像金字塔

    我们将学习如何通过一种称为修复的方法去除旧照片中的小噪音,笔画等.基本思路很简单:用相邻像素替换那些坏标记,使其看起来像邻域. cv2.inpaint() cv2.INPAINT_TELEA cv2.INPAINT_NS import numpy as np import cv2 as cv img = cv.imread('messi_2.jpg') mask = cv.imread('mask2.png',0) dst = cv.inpaint(img,mask,3,cv.INPAINT_T

  • python基于opencv 实现图像时钟

    解决方案详解 绘制表盘 表盘上只有60条分/秒刻线和12条小时刻线,当然还有表盘的外部轮廓圆,也就是重点在如何画72根线.先把简单的圆画出来: import cv2 as cv import math import datetime import numpy as np margin = 5 # 上下左右边距 radius = 220 # 圆的半径 center = (center_x, center_y) = (225, 225) # 圆心 # 1. 新建一个画板并填充成白色 img = np

  • 基于Python和openCV实现图像的全景拼接详细步骤

    基本介绍 图像的全景拼接,即"缝合"两张具有重叠区域的图来创建一张全景图.其中用到了计算机视觉和图像处理技术有:关键点检测.局部不变特征.关键点匹配.RANSAC(Random Sample Consensus,随机采样一致性)和透视变形. 具体步骤 (1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 : (2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 : (3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换: (4)将左图(右图)

  • Python使用OpenCV对图像进行缩放功能

    OpenCV:图片缩放和图像金字塔 对图像进行缩放的最简单方法当然是调用resize函数啦! resize函数可以将源图像精确地转化为指定尺寸的目标图像. 要缩小图像,一般推荐使用CV_INETR_AREA来插值:若要放大图像,推荐使用CV_INTER_LINEAR. 现在说说调用方式 第一种,规定好你要图片的尺寸,就是你填入你要的图片的长和高. #include<opencv2\opencv.hpp> #include<opencv2\highgui\highgui.hpp> u

  • Python基于opencv的图像压缩算法实例分析

    本文实例讲述了Python基于opencv的图像压缩算法.分享给大家供大家参考,具体如下: 插值方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值. 函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小.若设定 ROI,函数将按

  • python使用opencv resize图像不进行插值的操作

    如下所示: def resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None): 如果使用vanilla resize,不改变默认参数,就会对原图像进行插值操作.不关你是扩大还是缩小图片,都会通过插值产生新的像素值. 对于语义分割,target的处理,如果是对他进行resize操作的话.就希望不产生新的像素值,因为他的颜色信息,代表了像素的类别信息. 但是我们有时候希望resize之后不产生新的像素值,而是产生利用最近邻点

  • python 利用opencv实现图像网络传输

    本代码主要实现的是利用网络传输图片,用在我的树莓派项目之上.该项目在PC上运行服务端,树莓派上运行客户端,两者连接到同一局域网中,修改代码中的IP地址,就可以实现将树莓派采集到的图像数据实时传输到PC端.先运行服务端代码,然后运行客户端代码即可.树莓派摄像头使用的是普通的USB摄像头,并且在树莓派上安装了opencv,在树莓派上安装opencv的过程可以参考https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-open

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

随机推荐