浅谈pandas dataframe对除数是零的处理

如下例

data2[‘营业成本率'] = data2[‘营业成本本年累计']/data2[‘营业收入本年累计']*100

但有营业收入本年累计为0的情况,

则营业成本率为inf,即无穷大,而需要在表中体现为零,用如下方法填充:

data2['营业成本率'] = data2['营业成本本年累计']/data2['营业收入本年累计']*100
data2['营业成本率'].replace([np.inf, -np.inf, "", np.nan], 0, inplace=True)

当然,要引用到numpy库

需要导入库

import pandas as pd # 导入panads
from openpyxl import load_workbook # 读取时导入这个
from openpyxl.styles import Font, Alignment # 设置单元格格式
from openpyxl.utils import get_column_letter, column_index_from_string
# 柱形BarChart 3D柱BarChart3D
from openpyxl.chart import label, BarChart3D, BarChart, Reference
import numpy as np

也可以采用函数和apply的方式

def get_benrate(series):
 shouru = series['营业收入本年累计']
 chengben = series['营业成本本年累计']
 if shouru == 0:
  return 0
 else:
  return chengben/shouru*100

data2['营业成本率'] = 0
data2['营业成本率'] = data2.apply(get_benrate, axis=1)

以前虽然用

data2['三项费用完成比例本月数'] = 0
data2.loc[data2['任务指标三项费用'] != 0,'三项费用完成比例本月数'] = data2['三项费用合计本月数']/data2['任务指标三项费用']*100

解决过除数为0的情况,但最上面的例子,却怎么也不认,一直提示错误,不知道是什么原因,也请大家给指正。

到此这篇关于浅谈pandas dataframe对除数是零的处理的文章就介绍到这了,更多相关pandas dataframe对除数是零内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解pandas使用drop_duplicates去除DataFrame重复项参数

    Pandas之drop_duplicates:去除重复项 方法 DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数 这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行.返回DataFrame格式的数据. subset : column label or sequence of labels, optional 用来指定特定的列,默认所有列 keep : {'firs

  • 在pandas中一次性删除dataframe的多个列方法

    之前沉迷于使用index删除,然而发现pandas貌似有bug? import pandas as pd import numpy as np df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) x=[1,2] df.drop(index=[1,2], axis=1, inplace=True) #axis=1,试图指定列,然并卵 print df 输出为 A B C D 0 0 1 2 3 还是

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • python中pandas.DataFrame排除特定行方法示例

    前言 大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章. pandas.DataFrame排除特定行 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需

  • 浅谈pandas dataframe对除数是零的处理

    如下例 data2['营业成本率'] = data2['营业成本本年累计']/data2['营业收入本年累计']*100 但有营业收入本年累计为0的情况, 则营业成本率为inf,即无穷大,而需要在表中体现为零,用如下方法填充: data2['营业成本率'] = data2['营业成本本年累计']/data2['营业收入本年累计']*100 data2['营业成本率'].replace([np.inf, -np.inf, "", np.nan], 0, inplace=True) 当然,

  • 浅谈Pandas dataframe数据处理方法的速度比较

    数据修改主要以增删改差为主,这里比较几种写法在数据处理时间上的巨大差别. 数据量大概是500万行级别的数据,文件大小为100M. 1.iloc iloc是一种速度极其慢的写法.这里我们对每个csv文件中的每一行循环再用iloc处理,示例代码如下: for index in range(len(df)): df.iloc['attr'][index] = xxx 使用这种方法对五百万行的数据进行处理大概需要5个小时,实在是很慢. 2.at at相比于iloc有了很大的性能提升,也是for循环处理,

  • 浅谈pandas中DataFrame关于显示值省略的解决方法

    python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们

  • 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

    pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1

  • 浅谈Pandas:Series和DataFrame间的算术元素

    如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.Series与Series s1 = Series([1,3,5,7],index=['a','b','c','d']) s2 = Series([2,4,6,8],index=['a','b','c','e']) 索引对齐项相加,不对齐项的值取NaN s1+s2 1 a 3.0 b 7.0 c 11.0 d NaN e NaN d

  • 浅谈Pandas中map, applymap and apply的区别

    1.apply() 当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示 In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon']) In [117]: frame Out[117]: b d e Utah -0.029638 1.081563 1.280300 Ohio 0.647747 0.831136 -1.

  • 浅谈pandas用groupby后对层级索引levels的处理方法

    层及索引levels,刚开始学习pandas的时候没有太多的操作关于groupby,仅仅是简单的count.sum.size等等,没有更深入的利用groupby后的数据进行处理.近来数据处理的时候有遇到这类问题花了一点时间,所以这里记录以及复习一下:(以下皆是个人实践后的理解) 我使用一个实例来讲解下面的问题:一张数据表中有三列(动物物种.物种品种.品种价格),选出每个物种从大到小品种的前两种,最后只需要品种和价格这两列. 以上这张表是我们后面需要处理的数据表 (物种 品种 价格) levels

  • 浅谈pandas中shift和diff函数关系

    通过?pandas.DataFrame.shift命令查看帮助文档 Signature: pandas.DataFrame.shift(self, periods=1, freq=None, axis=0) Docstring: Shift index by desired number of periods with an optional time freq 该函数主要的功能就是使数据框中的数据移动,若freq=None时,根据axis的设置,行索引数据保持不变,列索引数据可以在行上上下移动

  • 浅谈Pandas 排序之后索引的问题

    如下所示: In [1]: import pandas as pd ...: df=pd.DataFrame({"a":[1,2,3,4,5],"b":[5,4,3,2,1]}) In [2]: df Out[2]: a b 0 1 5 1 2 4 2 3 3 3 4 2 4 5 1 In [3]: df=df.sort_values(by="b") # 按照b列排序 In [4]: df Out[4]: a b 4 5 1 3 4 2 2 3

  • 浅谈pandas筛选出表中满足另一个表所有条件的数据方法

    今天记录一下pandas筛选出一个表中满足另一个表中所有条件的数据.例如: list1 结构:名字,ID,颜色,数量,类型. list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']] list2结构:名字,类型,颜色. list2 = [['a','03',255],['a','06',481]] 如何在list1中找出所有与list2中匹配的元素?要得到下面的结果:lis

随机推荐