浅析bilateral filter双边滤波器的理解

图像去噪的方法很多,如中值滤波,高斯滤波,维纳滤波等等。但这些降噪方法容易模糊图片的边缘细节,对于高频细节的保护效果并不明显。相比较而言,bilateral filter双边滤波器可以很好的边缘保护,即可以在去噪的同时,保护图像的边缘特性。双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度像素值相似度的一种折衷处理,同时考虑空域信息灰度相似性,达到保边去噪的目的(不理解这几个概念没关系,后面会慢慢解释)。


1. 双边滤波(Bilateral filter)的原理

双边滤波器之所以能够做到在平滑去噪的同时还能够很好的保存边缘(Edge Preserve),是由于其滤波器的核由两个函数生成:空间域核和值域核

(1)空间域核:由像素位置欧式距离决定的模板权值

为模板窗口的其他系数的坐标;其中

为模板窗口的中心坐标点;

为高斯函数的标准差。 使用该公式生成的滤波器模板和高斯滤波器使用的模板是没有区别的。

在一些博客和教程里,这个权值称为定义域核,也称为空间系数,或空间域(spatial domain S)。显示由的计算公式可知,它是计算临近点到中心点临近程度,因此定义域核是用于衡量空间临近的程度。

(2)值域核:由像素值的差值决定的模板权值

其中,为模板窗口的其他系数的坐标,表示图像在点处的像素值;为模板窗口的中心坐标点,对应的像素值为为高斯函数的标准差。

一般将权值称为值域核,像素值域(range domain R),不管是值域核还是空间域核,其大小都在[0 1]之间

(3)将上述两个模板相乘就得到了双边滤波器的模板权值:

因此,双边滤波器的数据公式可以表示如下:

2. 双边滤波(Bilateral filter)理解

双边滤波(Bilateral filter)其综合了高斯滤波器(Gaussian Filter)和α-截尾均值滤波器(Alpha-Trimmed mean Filter)的特点,同时考虑了空间域与值域的差别,而Gaussian Filter和α均值滤波分别只考虑了空间域和值域差别。高斯滤波器只考虑像素间的欧式距离,其使用的模板系数随着和窗口中心的距离增大而减小;α-截尾均值滤波器则只考虑了像素灰度值之间的差值,去掉α%的最小值和最大值后再计算均值。

2.1 空域权重和值域权重的意义:

空域权重衡量的是 两点之间的距离,距离越远权重越低;

值域权重衡量的是两点之间的像素值相似程度,越相似权重越大

这里从图像的平坦区域边缘区域定性分析双边滤波的降噪效果

  • 在平坦区域,临近像素的像素值的差值较小,对应值域权重接近于1,此时空域权重起主要作用,相当于直接对此区域进行高斯模糊。因此,平坦区域相当于进行高斯模糊。
  • 在边缘区域,临近像素的像素值的差值较大,对应值域权重接近于0,导致此处核函数下降(因),当前像素受到的影响就越小,从而保持了原始图像的边缘的细节信息。

3. Opencv双边滤波函数:

opencv中提供了bilateralFilter()函数来实现双边滤波操作,其原型如下:

void cv::bilateralFilter(InputArray src,
OutputArray 	dst,
int 	d,
double 	sigmaColor,
double 	sigmaSpace,
int 	borderType = BORDER_DEFAULT
)		

InputArray src: 输入图像,可以是Mat类型,图像必须是8位或浮点型单通道、三通道的图像。

  • OutputArray dst: 输出图像,和原图像有相同的尺寸和类型。
  • int d: 表示在过滤过程中每个像素邻域的直径范围。如果这个值是非正数,则函数会从第五个参数sigmaSpace计算该值。
  • double sigmaColor: 颜色空间过滤器的sigma值,这个参数的值月大,表明该像素邻域内有越宽广的颜色会被混合到一起,产生较大的半相等颜色区域。 (这个参数可以理解为值域核
  • double sigmaSpace: 坐标空间中滤波器的sigma值,如果该值较大,则意味着越远的像素将相互影响,从而使更大的区域中足够相似的颜色获取相同的颜色。当d>0时,d指定了邻域大小且与sigmaSpace无关,否则d正比于sigmaSpace. (这个参数可以理解为空间域核
  • int borderType=BORDER_DEFAULT: 用于推断图像外部像素的某种边界模式,有默认值BORDER_DEFAULT.

双边滤波器可以很好的保存图像边缘细节而滤除掉低频分量的噪音,但是双边滤波器的效率不是太高,花费的时间相较于其他滤波器而言也比较长。
对于简单的滤波而言,可以将两个sigma值设置成相同的值,如果值<10,则对滤波器影响很小,如果值>150则会对滤波器产生较大的影响,会使图片看起来像卡通。

示例代码:

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

//定义全局变量
const int g_ndMaxValue = 100;
const int g_nsigmaColorMaxValue = 200;
const int g_nsigmaSpaceMaxValue = 200;
int g_ndValue;
int g_nsigmaColorValue;
int g_nsigmaSpaceValue;

Mat g_srcImage;
Mat g_dstImage;

//定义回调函数
void on_bilateralFilterTrackbar(int, void*);

int main()
{
 g_srcImage = imread("lena.jpg");

 //判断图像是否加载成功
 if(g_srcImage.empty())
 {
 cout << "图像加载失败!" << endl;
 return -1;
 }
 else
 cout << "图像加载成功!" << endl << endl;

 namedWindow("原图像", WINDOW_AUTOSIZE);
 imshow("原图像", g_srcImage);

 //定义输出图像窗口属性和轨迹条属性
 namedWindow("双边滤波图像", WINDOW_AUTOSIZE);
 g_ndValue = 10;
 g_nsigmaColorValue = 10;
 g_nsigmaSpaceValue = 10;

 char dName[20];
 sprintf(dName, "邻域直径 %d", g_ndMaxValue);

 char sigmaColorName[20];
 sprintf(sigmaColorName, "sigmaColor %d", g_nsigmaColorMaxValue);

 char sigmaSpaceName[20];
 sprintf(sigmaSpaceName, "sigmaSpace %d", g_nsigmaSpaceMaxValue);

 //创建轨迹条
 createTrackbar(dName, "双边滤波图像", &g_ndValue, g_ndMaxValue, on_bilateralFilterTrackbar);
 on_bilateralFilterTrackbar(g_ndValue, 0);

 createTrackbar(sigmaColorName, "双边滤波图像", &g_nsigmaColorValue,
   g_nsigmaColorMaxValue, on_bilateralFilterTrackbar);
 on_bilateralFilterTrackbar(g_nsigmaColorValue, 0);

 createTrackbar(sigmaSpaceName, "双边滤波图像", &g_nsigmaSpaceValue,
   g_nsigmaSpaceMaxValue, on_bilateralFilterTrackbar);
 on_bilateralFilterTrackbar(g_nsigmaSpaceValue, 0);

 waitKey(0);

 return 0;
}

void on_bilateralFilterTrackbar(int, void*)
{
 bilateralFilter(g_srcImage, g_dstImage, g_ndValue, g_nsigmaColorValue, g_nsigmaSpaceValue);
 imshow("双边滤波图像", g_dstImage);
}

【尊重原创,转载请注明出处】:https://blog.csdn.net/guyuealian/article/details/82660826

参考资料:

【1】https://www.cnblogs.com/wangguchangqing/p/6416401.html

【2】https://blog.csdn.net/MoFMan/article/details/77482794

到此这篇关于bilateral filter双边滤波器的通俗理解的文章就介绍到这了,更多相关bilateral filter双边滤波器内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 推荐个Css的filter常用滤波器属性及语句大全

    Css的filter常用滤波器属性及语句大全 语法:STYLE="filter:filtername(fparameter1, fparameter2...)"  (Filtername为滤镜的名称,fparameter1.fparameter2等是滤镜的参数) 滤镜说明: Alpha:设置透明层次  blur:创建高速度移动效果,即模糊效果  Chroma:制作专用颜色透明  DropShadow:创建对象的固定影子  FlipH:创建水平镜像图片  FlipV:创建垂直镜像图片 

  • 浅析bilateral filter双边滤波器的理解

    图像去噪的方法很多,如中值滤波,高斯滤波,维纳滤波等等.但这些降噪方法容易模糊图片的边缘细节,对于高频细节的保护效果并不明显.相比较而言,bilateral filter双边滤波器可以很好的边缘保护,即可以在去噪的同时,保护图像的边缘特性.双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的(不理解这几个概念没关系,后面会慢慢解释). 1. 双边滤波(Bilateral filte

  • 浅析AngularJS Filter用法

    系统的学习了一下angularjs,发现angularjs的有些思想根php的模块smarty很像,例如数据绑定,filter.如果对smarty比较熟悉的话,学习angularjs会比较容易一点,这篇文章给大家介绍angularjs filter用法详解,感兴趣的朋友一起学习吧 Filter简介 Filter是用来格式化数据用的. Filter的基本原型( '|' 类似于Linux中的管道模式): 复制代码 代码如下: {{ expression | filter }} Filter可以被链式

  • 深入浅析JavaScript中with语句的理解

    JavaScript 有个 with 关键字, with 语句的原本用意是为逐级的对象访问提供命名空间式的速写方式. 也就是在指定的代码区域, 直接通过节点名称调用对象. with语句的作用是暂时改变作用域链.减少的重复输入. 其语法结构为: with(object){ //statements } 举一个实际例子吧: with(document.forms[]){ name.value = "lee king"; address.value = "Peking";

  • OpenCV半小时掌握基本操作之高斯双边

    目录 概述 边缘保留滤波 (EPF) 高斯双边 均值迁移 [OpenCV] ⚠️高手勿入! 半小时学会基本操作 ⚠️ 高斯双边 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天带大家用 OpenCV 来实现一个简单的磨皮. 边缘保留滤波 (EPF) 边缘保留滤波 (Edge Preserving Filter) 是图像处理的一种技术. 有别与传统滤波, EPF 会对差别较大的像素区域进行区分, 在保持边缘锐利的同时消除噪声或纹理. 高斯双边 双边滤波 (Bilat

  • OpenCV实现图像滤波之双边滤波

    本文实例为大家分享了opencv实现双边滤波的具体代码,供大家参考,具体内容如下 1.2D卷积 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 使用自定义卷积核进行图像2D卷积操作 函数原型: filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst 函数返回值:dst:2d卷积操作后的结果 函数解析: ddepth:指定

  • Python OpenCV之常用滤波器使用详解

    目录 1. 滤波器 1.1 什么是滤波器 1.2 关于滤波核 1.3 素材选择 2.均值滤波器 cv2.blur() 2.1 语法简介 2.2 代码示例 3. 中值滤波器 cv2.medianBlur() 代码示例 4. 高斯滤波器 cv2.GaussianBlur() 5. 双边滤波器 cv2.bilateralFilter() 1. 滤波器 1.1 什么是滤波器 滤波器是对图像做平滑处理 的一种常用工具. 平滑处理即在尽可能地保留原图像信息的情况下,对像素值进行微调,使邻近的像素值之间,值的

  • JAVA实现双边决策的示例

    现实生活中存在很多问题,比如商品买卖如何实现商家利润最大化?大学生招生录取如何实现整体效果最好?病人医生如何实现整体服务水平最高等?这些我们都可以把他统一的转化为双边决策问题.下面先说说自己对双边决策的理解. 双边决策--个人理解 为了帮助大家理解,我用一个简单的例子介绍什么是双边决策,加入现在市场上有10位顾客,分别为A0.A1.A2.A3.A4.A5.A6.A7.A8.A9,市场上有是个商品,分别为B0.B1.B2.B3.B4.B5.B6.B7.B8.B9,现在要求要把这10个商品分别分给这

  • Python实现在线批量美颜功能过程解析

    结果 然后直接放源码: import cv2 as cv source = cv.imread("zhaopian.jpg") dst = cv.bilateralFilter(src=source, d=0, sigmaColor=30, sigmaSpace=15) cv.imshow("source", source) cv.imshow("dst", dst) cv.waitKey() cv.destroyAllWindows() 好了,

  • C++ opencv将图片动漫化介绍

    目录 边缘检测 贴边缘图到原图 双边滤波 HSI空间修改饱和度 后续: 总结 最近对图像处理十分感兴趣,也学着用opencv 实现各种简单的图像处理,因此,有了下面的实验,就是将照片处理成漫画的风格. 对照片进行动漫话一般需要四个步骤1.边缘检测2.将边缘检测得到的边缘 以黑色的形式贴在原来的画上.3.对贴了边缘的图进行双边滤波,双边滤波可以较好的滤波的同时保留边缘.4.修改图像的颜色的饱和度,本文采用的是将RGB转化为HSI空间,然后调整S分量. 边缘检测 对于边缘检测,本文采用的是canny

随机推荐