tensorflow实现对张量数据的切片操作方式

如下所示:

import tensorflow as tf
a=tf.constant([[[1,2,3,4],[4,5,6,7],[7,8,9,10]],
      [[11,12,13,14],[20,21,22,23],[15,16,17,18]]])
print(a.shape)
b,c=tf.split(a,2,0) #参数1、张量 2、获得的切片数 3、切片的维度   将两个切片分别赋值给b,c
print(b.shape)
print(c.shape
with tf.Session() as sess: #查看运行结果
  print(sess.run(b))
  print(sess.run(c))

输出结果为

(2, 3, 4)
(1, 3, 4)
(1, 3, 4)
[[[ 1 2 3 4]
 [ 4 5 6 7]
 [ 7 8 9 10]]]
[[[11 12 13 14]
 [20 21 22 23]
 [15 16 17 18]]]

注意到此时b,c均为三维张量数据,若想转换为二维数组,可使用tf.reshape命令

d=tf.reshape(b,[3,4])
print(d.shape)   

#output
(3, 4)

以上这篇tensorflow实现对张量数据的切片操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow 获取所有variable或tensor的name示例

    获取所有variable(每个op中可训练的张量)的name: for variable_name in tf.global_variables(): print(variable_name) 获取所有tensor(每个op的输出张量)的name: for tensor_name in tf.contrib.graph_editor.get_tensors(tf.get_default_graph()): print(tensor_name) 获取所有op及其输入输出的name: with tf

  • 浅谈tensorflow中张量的提取值和赋值

    tf.gather和gather_nd从params中收集数值,tf.scatter_nd 和 tf.scatter_nd_update用updates更新某一张量.严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作. 已知数值的位置,从张量中提取数值:tf.gather, tf.gather_nd tf.gather indices每个元素(标量)是params某个axis的索引,tf.gather_nd 中indices最后一个阶对应于索引值. tf.ga

  • tensorflow之获取tensor的shape作为max_pool的ksize实例

    实验发现,tensorflow的tensor张量的shape不支持直接作为tf.max_pool的参数,比如下面这种情况(一个错误的示范): self.max_pooling1 = tf.nn.max_pool(self.l_6, ksize = [1, tf.shape(self.F1)[0], 1, 1], strides = [1, 1, 1, 1], padding = 'VALID', name = 'maxpool1') 我在max_pool的过程中想对特征每一列进行max_pool

  • Tensorflow获取张量Tensor的具体维数实例

    获取Tensor的维数 >>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimensi

  • Tensorflow 实现修改张量特定元素的值方法

    最近在做一个摘要生成的项目,过程中遇到了很多小问题,从网上查阅了许多别人解决不同问题的方法,自己也在旁边开了个jupyter notebook搞些小实验,这里总结一下遇到的一些问题. Tensorflow用起来不是很顺手,很大原因在于tensor这个玩意儿,并不像数组或者列表那么的直观,直接print的话只能看到 Tensor(-) 这样的提示.比如下面这个问题,我们想要修改张量特定位置上的某个数值,操作起来就相对麻烦一些.和array一样,张量也是可以分段读取的,比如 tensor[1:10]

  • tensorflow实现对张量数据的切片操作方式

    如下所示: import tensorflow as tf a=tf.constant([[[1,2,3,4],[4,5,6,7],[7,8,9,10]], [[11,12,13,14],[20,21,22,23],[15,16,17,18]]]) print(a.shape) b,c=tf.split(a,2,0) #参数1.张量 2.获得的切片数 3.切片的维度 将两个切片分别赋值给b,c print(b.shape) print(c.shape with tf.Session() as s

  • keras Lambda自定义层实现数据的切片方式,Lambda传参数

    1.代码如下: import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import merge from keras.utils.visualize_util import plot from keras.layers import Input, Lambda from keras.models impo

  • TensorFlow人工智能学习张量及高阶操作示例详解

    目录 一.张量裁剪 1.tf.maximum/minimum/clip_by_value() 2.tf.clip_by_norm() 二.张量排序 1.tf.sort/argsort() 2.tf.math.topk() 三.TensorFlow高阶操作 1.tf.where() 2.tf.scatter_nd() 3.tf.meshgrid() 一.张量裁剪 1.tf.maximum/minimum/clip_by_value() 该方法按数值裁剪,传入tensor和阈值,maximum是把数

  • TensorFlow tf.nn.max_pool实现池化操作方式

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow] tf.nn.conv2d实现卷积的方式 tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape 第

  • 使用Tensorflow将自己的数据分割成batch训练实例

    学习神经网络的时候,网上的数据集已经分割成了batch,训练的时候直接使用batch.next()就可以获取batch,但是有的时候需要使用自己的数据集,然而自己的数据集不是batch形式,就需要将其转换为batch形式,本文将介绍一个将数据打包成batch的方法. 一.tf.slice_input_producer() 首先需要讲解两个函数,第一个函数是 :tf.slice_input_producer(),这个函数的作用是从输入的tensor_list按要求抽取一个tensor放入文件名队列

  • Tensorflow 多线程与多进程数据加载实例

    在项目中遇到需要处理超级大量的数据集,无法载入内存的问题就不用说了,单线程分批读取和处理(虽然这个处理也只是特别简单的首尾相连的操作)也会使瓶颈出现在CPU性能上,所以研究了一下多线程和多进程的数据读取和预处理,都是通过调用dataset api实现 1. 多线程数据读取 第一种方法是可以直接从csv里读取数据,但返回值是tensor,需要在sess里run一下才能返回真实值,无法实现真正的并行处理,但如果直接用csv文件或其他什么文件存了特征值,可以直接读取后进行训练,可使用这种方法. imp

  • Tensorflow分批量读取数据教程

    之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1).如果加入batch,比如batch大小为5,那么拿到的tensor的r

  • tensorflow多维张量计算实例

    两个三维矩阵的乘法怎样计算呢?我通过实验发现,tensorflow把前面的维度当成是batch,对最后两维进行普通的矩阵乘法.也就是说,最后两维之前的维度,都需要相同. 首先计算shape为(2, 2, 3)乘以shape为(2, 3, 2)的张量. import tensorflow as tf import numpy as np a = tf.constant(np.arange(1, 13, dtype=np.float32), shape=[2, 2, 3]) b = tf.const

  • Tensorflow中批量读取数据的案列分析及TFRecord文件的打包与读取

    单一数据读取方式: 第一种:slice_input_producer() # 返回值可以直接通过 Session.run([images, labels])查看,且第一个参数必须放在列表中,如[...] [images, labels] = tf.train.slice_input_producer([images, labels], num_epochs=None, shuffle=True) 第二种:string_input_producer() # 需要定义文件读取器,然后通过读取器中的

随机推荐