Python生成器generator用法示例

本文实例分析了Python生成器generator用法。分享给大家供大家参考,具体如下:

生成器generator本质是一个函数,它记住上一次在函数体中的位置,在生成器函数下一次调用,会自动找到该位置,局部变量都保持不变

l = [x * 2 for x in range(10)] # 列表生成式
g = (x * 2 for x in range(10))
print(l,g) # l打印的是一个列表,g则是一个generator的内存地址

一次性打印获取generator的所有元素:

for index in g:
  print(index)

逐步获取generator的元素:

print(g.__next__())   # 0
print(g.__next__())   # 2
print(g.__next__())   # 4
print(g.__next__())   # 6
print(g.__next__())   # 8

yield关键字

通常我们做一个打印0-50的数时,会定义一个函数,只要调用这个函数,它就会自定打印0-50的数

def fib(num):
  n = 0
  while n < num:
    print(n)
    n+=1
fib(50)

其实我们只需要改动那么一丢丢,就可以将上面那个函数改变成一个generator

def fib(num):
  n = 0
  while n < num:
    yield n   # 在使用yield关键字时,需在前面先定义一个变量n
    n+=1
g = fib(50)   # 此时的g是一个generator

generator原理:通过某一种特定的算法,在一个特定的条件下,不断向下推算,得出后续的元素。因为generator不必创建list,所以可以大大的节约内存空间。举个栗子:

def fib():
  print("step 1")
  yield 1
  print("step 2")
  yield 2
  print("step 3")
  yield 3
g = fib()
g.__next__()  # 结果:step 1
g.__next__()  # 结果:step 2
g.__next__()  # 结果:step 3

根据结果可以看出,每次执行next(),都会打印一句,而遇到yield就直接跳出,并记录位置,再次执行next()时,会从记录的那个位置开始往下执行,再次遇到yield时跳出。

此时我们不经会想,如果我们不断的调用next(),该如何判断是否已经完毕,如果越界了,是否会报错?

# -* coding:utf-8 -*-
#! python3
'''
Created on 2018年8月10日

@author: Administrator
'''
def fib(num):
  n = 0
  while n < num :
    yield n
    n+=1
g = fib(10)
while True:
  print(g.__next__())

执行结果:

可以看出当遍历完毕之后,如果在此调用next()将会报错,我们是无法获取到遍历的下标的,那么我们该如何规避这个错误呢?对next()抛异常处理

def fib(num):
  n = 0
  while n < num :
    yield n
    n+=1
g = fib(10)
while True:
  try:
    print(g.__next__())
  except StopIteration:
    print("已经完毕")
    break

此时将不再报错,当越界的时候,系统会自动捕捉该异常,并且打印你想要输出的信息

send方法

在单线程下实现一个简单的并行效果

# -*- coding:utf-8 -*-
#! python3
'''
Created on 2018年8月10日

@author: Administrator
'''
import time
def startEat(name):
  print("%s准备开始吃包子了"%name)
  while True:
    b = yield
    print("%s被%s吃了"%(b,name))
def startMake():
  laowang = startEat("laowang")
  laowang.__next__()
  for index in range(10):
    time.sleep(1)
    print("已经做好了包子%d号"%index)
    laowang.send("包子%d号"%index)
startMake()

执行结果:

更多关于Python相关内容可查看本站专题:《Python列表(list)操作技巧总结》、《Python字符串操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python生成器(Generator)详解

    通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了. 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间.在Python中,这种一边循环一边计算的机制,称为生成器(Generator). 简单生成器 要创建一个generator,有很

  • Python3中的列表生成式、生成器与迭代器实例详解

    本文实例讲述了Python3中的列表生成式.生成器与迭代器.分享给大家供大家参考,具体如下: 列表生成式 Python内置的一种极其强大的生成列表 list 的表达式.返回结果必须是列表. 基本语法: [ 变量表达式 for 变量 in 表达式 ] 示例 a = [x ** 2 for x in range(1, 10)] b = [x * x for x in range(1, 11) if x % 2 == 0] c = [m + n for m in 'ABC' for n in '123

  • 详解Python3中的迭代器和生成器及其区别

    介绍 本篇将介绍Python3中的迭代器与生成器,描述可迭代与迭代器关系,并实现自定义类的迭代器模式. 迭代的概念 上一次输出的结果为下一次输入的初始值,重复的过程称为迭代,每次重复即一次迭代,并且每次迭代的结果是下一次迭代的初始值 注:循环不是迭代 while True: #只满足重复,因而不是迭代 print('====>')  迭代器 1.为什么要有迭代器? 对于没有索引的数据类型,必须提供一种不依赖索引的迭代方式. 2.迭代器定义: 迭代器:可迭代对象执行__iter__方法,得到的结果

  • 基于python2.7实现图形密码生成器的实例代码

    具体代码如下所示: #coding:utf8 import random,wx def password(event): a = [chr(i) for i in range(97,123)] b = [chr(i) for i in range(65,91)] c = ['0','1','2','3','4','5','6','7','8','9'] d = ['!','@','#','$','%','^','&','*','(',')','=','_','+','/','?'] set1 =

  • 深入讲解Python中的迭代器和生成器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

  • 简单理解Python中基于生成器的状态机

    简单生成器有许多优点.生成器除了能够用更自然的方法表达一类问题的流程之外,还极大地改善了许多效率不足之处.在 Python 中,函数调用代价不菲:除其它因素外,还要花一段时间解决函数参数列表(除了其它的事情外,还要分析位置参数和缺省参数).初始化框架对象还要采取一些建立步骤(据 Tim Peters 在 comp.lang.python 上所说,有 100 多行 C 语言程序:我自己还没检查 Python 源代码呢).与此相反,恢复一个生成器就相当省力:参数已经解析完了,而且框架对象正"无所事事

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • python迭代器与生成器详解

    例子 老规矩,先上一个代码: def add(s, x): return s + x def gen(): for i in range(4): yield i base = gen() for n in [1, 10]: base = (add(i, n) for i in base) print list(base) 这个东西输出可以脑补一下, 结果是[20,21,22,23], 而不是[10, 11, 12, 13]. 当时纠结了半天,一直没搞懂,后来齐老师稍微指点了一下, 突然想明白了-

  • Python生成器generator用法示例

    本文实例分析了Python生成器generator用法.分享给大家供大家参考,具体如下: 生成器generator本质是一个函数,它记住上一次在函数体中的位置,在生成器函数下一次调用,会自动找到该位置,局部变量都保持不变 l = [x * 2 for x in range(10)] # 列表生成式 g = (x * 2 for x in range(10)) print(l,g) # l打印的是一个列表,g则是一个generator的内存地址 一次性打印获取generator的所有元素: for

  • python生成器generator用法实例分析

    本文实例讲述了python生成器generator用法.分享给大家供大家参考.具体如下: 使用yield,可以让函数生成一个结果序列,而不仅仅是一个值 例如: def countdown(n): print "counting down" while n>0: yield n #生成一个n值 n -=1 >>> c = countdown(5) >>> c.next() counting down 5 >>> c.next()

  • Python生成器generator原理及用法解析

    前言 生成器generator 生成器的本质是一个迭代器(iterator) 要理解生成器,就要在理解一下迭代,可迭代对象,迭代器,这三个概念 Python生成器generator简介 iteration, iterable, iterator 迭代(iteration):在python中迭代通常是通过for...in...来实现的.而且只要是可迭代对象iterable,都能进行迭代. 可迭代对象(iterable):Python中的任意的对象,只要它定义了可以返回一个迭代器的 __iter__

  • 浅谈Python生成器generator之next和send的运行流程(详解)

    对于普通的生成器,第一个next调用,相当于启动生成器,会从生成器函数的第一行代码开始执行,直到第一次执行完yield语句(第4行)后,跳出生成器函数. 然后第二个next调用,进入生成器函数后,从yield语句的下一句语句(第5行)开始执行,然后重新运行到yield语句,执行后,跳出生成器函数,后面再次调用next,依次类推. 下面是一个列子: def consumer(): r = 'here' for i in xrange(3): yield r r = '200 OK'+ str(i)

  • Python切片索引用法示例

    本文实例讲述了Python切片索引用法.分享给大家供大家参考,具体如下: 在Python中,可以用用简单的方括号加一个下标的方式访问序列的每一个元素,这种方式称之为切片操作符,切片操作符有三种形式: [],[:],[::] 访问某一数据元素的语法如下: sequence[index] sequence是序列的名字,index是访问元素的对应的偏移量,为正数,0<=index<=len(sequence)-1:使用负索引的时候,其范围为-len(sequence) <=index <

  • Python列表推导式与生成器表达式用法示例

    本文实例讲述了Python列表推导式与生成器表达式用法.分享给大家供大家参考,具体如下: 和列表一样,列表推导式也采用方括号[]表示,并且用到了一个简写版的for循环,第一部分是一个生成结果列表元素的表达式,第二部分是一个输入表达式上的循环.阅读理解列表表达式的推荐做法是先从里面的for循环开始,向右查看是否有if条件,然后将推导式开始的那个表达式映射到每一个匹配的元素上去. >>> even_numbers = [x for x in range(10) if x%2 == 0] &g

  • Python装饰器用法示例小结

    本文实例讲述了Python装饰器用法.分享给大家供大家参考,具体如下: 下面的程序示例了python装饰器的使用: 示例一: def outer(fun): print fun def wrapper(arg): result=fun(arg) print 'over!' return result return wrapper @outer def func1(arg): print 'func1',arg return 'very good!' response=func1('python'

  • Python pymongo模块用法示例

    本文实例讲述了Python pymongo模块用法.分享给大家供大家参考,具体如下: MongoDB优点 MongoDB是一个为当代web应用而生的noSQL数据库,它有如下优点: 1.文档型存储.可以把关系型数据库的表理解为一个电子表格,列表示字段,每行的记录其实是按照列的字段顺序排列的值得元组.而存储在MongoDB中的文档被存储为键-值对的形式,值却可以是任意类型且可以嵌套.之前在用关系型数据库的时候,我们把产品信息打散到不同的表中,要通过关系表或者使用join拼接成复杂的SQL语句的方式

  • Python列表切片用法示例

    本文实例讲述了Python列表切片用法.分享给大家供大家参考,具体如下: Python中符合序列的有序序列都支持切片(slice),例如列表,字符串,元组. 格式:[start:end:step] start:起始索引,从0开始,-1表示结束 end:结束索引 step:步长,end-start,步长为正时,从左向右取值.步长为负时,反向取值 注意切片的结果不包含结束索引,即不包含最后的一位,-1代表列表的最后一个位置索引 a=[1,2,3,4,5,6] b1=a[:] #省略全部,代表截取全部

  • Python minidom模块用法示例【DOM写入和解析XML】

    本文实例讲述了Python minidom模块用法.分享给大家供大家参考,具体如下: 一.DOM写XML文件 # -*- coding:utf-8 -*- #!python3 #导入minidom from xml.dom import minidom # 1.创建DOM树对象 dom=minidom.Document() # 2.创建根节点.每次都要用DOM对象来创建任何节点. root_node=dom.createElement('root') # 3.用DOM对象添加根节点 dom.ap

随机推荐