如何将yolov5中的PANet层改为BiFPN详析
目录
- 一、Add
- 二、Concat
- 总结
本文以YOLOv5-6.1版本为例
一、Add
1.在common.py后加入如下代码
# 结合BiFPN 设置可学习参数 学习不同分支的权重 # 两个分支add操作 class BiFPN_Add2(nn.Module): def __init__(self, c1, c2): super(BiFPN_Add2, self).__init__() # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter # 从而在参数优化的时候可以自动一起优化 self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0) self.silu = nn.SiLU() def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1])) # 三个分支add操作 class BiFPN_Add3(nn.Module): def __init__(self, c1, c2): super(BiFPN_Add3, self).__init__() self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0) self.silu = nn.SiLU() def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化 # Fast normalized fusion return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))
2.yolov5s.yaml进行修改
# YOLOv5 by Ultralytics, GPL-3.0 license # Parameters nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ] # YOLOv5 v6.0 BiFPN head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, BiFPN_Add2, [256, 256]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, BiFPN_Add2, [128, 128]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [512, 3, 2]], # 为了BiFPN正确add,调整channel数 [[-1, 13, 6], 1, BiFPN_Add3, [256, 256]], # cat P4 <--- BiFPN change 注意v5s通道数是默认参数的一半 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, BiFPN_Add2, [256, 256]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]
3.修改yolo.py,在parse_model
函数中找到elif m is Concat:
语句,在其后面加上BiFPN_Add
相关语句:
# 添加bifpn_add结构 elif m in [BiFPN_Add2, BiFPN_Add3]: c2 = max([ch[x] for x in f])
4.修改train.py,向优化器中添加BiFPN的权重参数
将BiFPN_Add2
和BiFPN_Add3
函数中定义的w
参数,加入g1
# BiFPN_Concat elif isinstance(v, BiFPN_Add2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w) elif isinstance(v, BiFPN_Add3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w)
然后导入一下这两个包
二、Concat
1.在common.py后加入如下代码
# 结合BiFPN 设置可学习参数 学习不同分支的权重 # 两个分支concat操作 class BiFPN_Concat2(nn.Module): def __init__(self, dimension=1): super(BiFPN_Concat2, self).__init__() self.d = dimension self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化 # Fast normalized fusion x = [weight[0] * x[0], weight[1] * x[1]] return torch.cat(x, self.d) # 三个分支concat操作 class BiFPN_Concat3(nn.Module): def __init__(self, dimension=1): super(BiFPN_Concat3, self).__init__() self.d = dimension # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter # 从而在参数优化的时候可以自动一起优化 self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化 # Fast normalized fusion x = [weight[0] * x[0], weight[1] * x[1], weight[2] * x[2]] return torch.cat(x, self.d)
2.yolov5s.yaml进行修改
# YOLOv5 by Ultralytics, GPL-3.0 license # Parameters nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ] # YOLOv5 v6.0 BiFPN head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, BiFPN_Concat2, [1]], # cat backbone P4 <--- BiFPN change [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, BiFPN_Concat2, [1]], # cat backbone P3 <--- BiFPN change [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14, 6], 1, BiFPN_Concat3, [1]], # cat P4 <--- BiFPN change [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, BiFPN_Concat2, [1]], # cat head P5 <--- BiFPN change [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]
3.修改yolo.py,在parse_model
函数中找到elif m is Concat:
语句,在其后面加上BiFPN_
Concat相关语句:
# 添加bifpn_concat结构 elif m in [Concat, BiFPN_Concat2, BiFPN_Concat3]: c2 = sum(ch[x] for x in f)
4.修改train.py,向优化器中添加BiFPN的权重参数
添加复方式同上(Add)
# BiFPN_Concat elif isinstance(v, BiFPN_Concat2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w) elif isinstance(v, BiFPN_Concat3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w)
至此,大功告成~~~
reference:
【YOLOv5-6.x】设置可学习权重结合BiFPN(Add操作)
【YOLOv5-6.x】设置可学习权重结合BiFPN(Concat操作)
总结
到此这篇关于如何将yolov5中的PANet层改为BiFPN的文章就介绍到这了,更多相关yolov5 PANet层改BiFPN内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)