python利用scatter绘画散点图

目录

scatter绘画散点图代码如下:

import matplotlib.pyplot  as plt
plt.scatter(x,y,
                s = 20
                c='b'
                marker=‘o'
                cmap=None,
                norm=None,
                vmin=None,
                vmax=None,
                alpha=None,
                linewidths=None,
)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
 
x=np.random.randint(0,10,10)
y=np.random.randint(0,10,10)
print(x)
print(y)
plt.scatter(x,y,s=50)默认形状圆点,颜色b 蓝色,大小50

out:

[5 1 5 3 1 5 0 5 4 7]
[8 2 7 7 8 6 3 8 5 9]

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
x = np.array([[0,0],[0,1],[1,1],[3,2],[-2,3],[1,2],[4,3]])
print(x)
plt.scatter(x[:,0],x[:,1],marker='x',color='k',s=20)#点的形状x,颜色黑色,大小20

 out:

[[ 0  0]
 [ 0  1]
 [ 1  1]
 [ 3  2]
 [-2  3]
 [ 1  2]
 [ 4  3]]

(0)

相关推荐

  • 在python中,使用scatter绘制散点图的实例

    如下所示: # coding=utf-8 import matplotlib.pyplot as plt x_values=[1,2,3,4,5] y_values=[1,4,9,16,25] # s为点的大小 plt.scatter(x_values,y_values,s=100) # 设置图表标题并给坐标轴加上标签 plt.title("Scatter pic",fontsize=24) plt.xlabel("Value",fontsize=14) plt.y

  • Python可视化Matplotlib散点图scatter()用法详解

    散点图是数据分析中非常常用的图形.用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式. 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律) Matplotlib 中绘制散点图的函数为 scatter() ,使用语法如下: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha

  • python scatter散点图用循环分类法加图例

    本文实例为大家分享了python scatter散点图用循环分类法加图例,供大家参考,具体内容如下 import matplotlib.pyplot as plt import kNN plt.rcParams['font.sans-serif']=['Simhei'] plt.rcParams['axes.unicode_minus']=False datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt') plt.f

  • Python使用matplotlib 模块scatter方法画散点图示例

    本文实例讲述了Python使用matplotlib 模块scatter方法画散点图.分享给大家供大家参考,具体如下: # -*-coding:utf-8-*- import matplotlib.pyplot as plt y = [12, 7, 1, 2, 6, 3, 7, 5, 12, 6, 14, 10, 6, 7, 1, 2, 9, 3, 4, 4, 4, 5, 4, 6, 9, 5, \ 2, 1, 2, 1, 7, 6, 43, 15, 18, 52, 39, 53, 39, 17,

  • python scatter绘制散点图

    目录 参数 s 参数marker marker属性 参数cmap vmin,vmax,norm散点亮度设置, alpha透明度 用法: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=No

  • python利用scatter绘画散点图

    目录 scatter绘画散点图代码如下: import matplotlib.pyplot  as plt plt.scatter(x,y,                 s = 20                 c='b'                 marker='o'                 cmap=None,                 norm=None,                 vmin=None,                 vmax=None,

  • Python利用matplotlib绘制散点图的新手教程

    前言 上篇文章介绍了使用matplotlib绘制折线图,参考:https://www.jb51.net/article/198991.htm,本篇文章继续介绍使用matplotlib绘制散点图. 一.matplotlib绘制散点图 # coding=utf-8 import matplotlib.pyplot as plt years = [2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] turnovers =

  • Python利用Turtle绘画简单图形

    目录 前期准备 基本函数与用法 绘画图形 1.画一个正方形 2.画一个三角形 3.画一个八角星 4.画一个八边形 5.其他图形 No.1.多彩的五角星 No.2.多彩的八角星 No.3.四圆镶嵌 No.4.彩虹螺旋 前期准备 首先,使用Python内置的Turtle绘图库需要在程序前添加以下代码: import turtle 也可以写成这样: from turtle import * 我们来讲一讲它们的区别: 使用import时,需要定义一个变量作为参数控制项,如: import turtle

  • Python利用matplotlib绘制约数个数统计图示例

    本文实例讲述了Python利用matplotlib绘制约数个数统计图.分享给大家供大家参考,具体如下: 利用Python计算1000以内自然数的约数个数,然后通过matplotlib绘制统计图. 下图为约数个数的散点图及其分布情况的条形图. Python代码: import collections import matplotlib.pyplot as plt def countDivisors(num): ans = 1 x = 2 while x * x <= num: cnt = 1 wh

  • Python利用matplotlib绘制折线图的新手教程

    前言 matplotlib是Python中的一个第三方库.主要用于开发2D图表,以渐进式.交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力. 一.安装matplotlib pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple 二.matplotlib图像简介 matplotlib的图像分为三层,容器层.辅助显示层和图像层. 1. 容器层主要由Canvas.Figure.Axes组成. Canvas位

  • Python利用Matplotlib绘制图表详解

    目录 前言 折线图绘制与显示 绘制数学函数图像 散点图绘制 绘制柱状图 绘制直方图 饼图 前言 Matplotlib 是 Python 中类似 MATLAB 的绘图工具,如果您熟悉 MATLAB,那么可以很快的熟悉它. Matplotlib 提供了一套面向对象绘图的 API,它可以轻松地配合 Python GUI 工具包(比如 PyQt,WxPython.Tkinter)在应用程序中嵌入图形.与此同时,它也支持以脚本的形式在 Python.IPython Shell.Jupyter Notebo

  • Python利用matplotlib模块数据可视化绘制3D图

    目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

  • Python利用matplotlib画出漂亮的分析图表

    目录 前言 数据集引入 折线图 饼图 散点图 面积图 直方图 条形图 前言 作为一名优秀的分析师,还是得学会一些让图表漂亮的技巧,这样子拿出去才更加有面子哈哈.好了,今天的锦囊就是介绍一下各种常见的图表,可以怎么来画吧. 数据集引入 首先引入数据集,我们还用一样的数据集吧,分别是 Salary_Ranges_by_Job_Classification以及 GlobalLandTemperaturesByCity.(具体数据集可以后台回复 plot获取) # 导入一些常用包 import pand

随机推荐