python scatter绘制散点图

目录
  • 参数 s
  • 参数marker
  • marker属性
  • 参数cmap
  • vmin,vmax,norm散点亮度设置, alpha透明度

用法:

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)

参数介绍:

import matplotlib.pyplot as plt
a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]
# 为了显示出c和edgecolors 我将linewidths调增到15
plt.scatter(a, b, linewidths=15,c='red',edgecolors=['black', 'green','cyan','lightgreen'])

参数 s

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(12,6))
plt.rcParams['font.family'] = 'SimHei'

a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]
plt.subplot(121)
plt.title('不添加s')
plt.scatter(a,b,c='red',linewidths=6)
plt.subplot(122)
plt.title('添加s,s=1.5')
plt.scatter(a,b,c='red',s=1.5,linewidths=6)
plt.show()

参数marker

import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))
plt.rcParams['font.family'] = 'SimHei'

a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]
plt.subplot(131)
plt.title('标准')
plt.scatter(a,b,linewidths=6)

plt.subplot(132)
plt.title("设置marker 'x'")
plt.scatter(a,b,marker='x')

plt.subplot(133)
plt.title("设置marker 'v'")
plt.scatter(a,b,marker='v')
plt.show()

marker属性

import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))
plt.rcParams['font.family'] = 'SimHei'

a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]

plt.subplot(141)
plt.title("设置marker '1'")
plt.scatter(a,b,s=100,marker='1')

plt.subplot(142)
plt.title("设置marker '2'")
plt.scatter(a,b,s=100,marker='2')

plt.subplot(143)
plt.title("设置marker '3'")
plt.scatter(a,b,s=100,marker='3')

plt.subplot(144)
plt.title("设置marker '4'")
plt.scatter(a,b,s=100,marker='4')
plt.show()

参数cmap

cmap主要是配合c参数一起使用的,c可以是一个颜色序列,使用数字列表代替
plt.cm.Spectral是一个颜色映射集,并不代表说明[0:5]代表某个颜色,参数c出现5个不同的值
然后为每个值分配一个颜色

import matplotlib.pyplot as plt

a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]
c = [0, 1, 2, 3, 4]
plt.rcParams['font.family'] = 'SimHei'

plt.subplot(121)
plt.title('标准')
plt.scatter(a, b, c=c, s=80)

plt.subplot(122)
plt.title('添加cmap')
plt.scatter(a, b, c=c, s=80, cmap=plt.cm.Spectral)
plt.show()

vmin,vmax,norm散点亮度设置, alpha透明度

plt.colorbar()颜色条

散点图进行多出设置,即成为气泡图,下面进行展示:

import matplotlib.pyplot as plt
# 导入颜色条库
from matplotlib import colors
import numpy as np

x = np.random.randn(50) # 随机产生50个X坐标
y = np.random.randn(50) # 随机产生50个Y坐标
color = np.random.rand(50) # 随机产生用于映射颜色的数值
size = 500 * np.random.rand(50) # 随机改变散点大小的数值
changecolor = colors.Normalize(vmin=0.4, vmax=0.8)
plt.scatter(x, y, c=color, s = size, alpha=0.3, cmap='viridis', norm=changecolor)
plt.colorbar() # 显示颜色条
plt.show()

到此这篇关于python scatter绘制散点图的文章就介绍到这了,更多相关pyth 散点图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python可视化Matplotlib散点图scatter()用法详解

    散点图是数据分析中非常常用的图形.用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式. 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律) Matplotlib 中绘制散点图的函数为 scatter() ,使用语法如下: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha

  • python scatter散点图用循环分类法加图例

    本文实例为大家分享了python scatter散点图用循环分类法加图例,供大家参考,具体内容如下 import matplotlib.pyplot as plt import kNN plt.rcParams['font.sans-serif']=['Simhei'] plt.rcParams['axes.unicode_minus']=False datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt') plt.f

  • 在python中,使用scatter绘制散点图的实例

    如下所示: # coding=utf-8 import matplotlib.pyplot as plt x_values=[1,2,3,4,5] y_values=[1,4,9,16,25] # s为点的大小 plt.scatter(x_values,y_values,s=100) # 设置图表标题并给坐标轴加上标签 plt.title("Scatter pic",fontsize=24) plt.xlabel("Value",fontsize=14) plt.y

  • Python使用matplotlib 模块scatter方法画散点图示例

    本文实例讲述了Python使用matplotlib 模块scatter方法画散点图.分享给大家供大家参考,具体如下: # -*-coding:utf-8-*- import matplotlib.pyplot as plt y = [12, 7, 1, 2, 6, 3, 7, 5, 12, 6, 14, 10, 6, 7, 1, 2, 9, 3, 4, 4, 4, 5, 4, 6, 9, 5, \ 2, 1, 2, 1, 7, 6, 43, 15, 18, 52, 39, 53, 39, 17,

  • python scatter绘制散点图

    目录 参数 s 参数marker marker属性 参数cmap vmin,vmax,norm散点亮度设置, alpha透明度 用法: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=No

  • Python matplotlib绘制散点图的实例代码

    前言 前面说到的主要是matplotlib对于图像的基础操作,然后从这篇开始,主要说一下点图,分析点图在实际问题的数据处理中应用非常广泛,比如说逻辑回归是利用现有的数据点通过拟合得到一定的函数关系,甚至生活中,物体运动的轨迹,也可以看做是连续的点绘制而成,还有图像,也是很多个像素点堆砌而成的,在图像处理中经常会针对单个像素点进行处理. 现在的深度学习或者机器学习,模型都是固定的,大多 不需要怎么改动,而能提升训练效果的,最重要的就是能更好的处理数据,而很多数据本身就是点集,利用matplotli

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 往期内容速看 Python用 matplotlib 绘制柱状图 Python matplotlib底层

  • Python matplotlib绘制散点图配置(万能模板案例)

    目录 散点图 散点图一行代码显示 加颜色的散点图 颜色深浅表示数值大小 散点图显示颜色和大小 自定义图表散点图 散点图万能模板 其他模板 散点图 散点图是指在 回归分析中,数据点在直角坐标系平面上的 分布图,散点图表示因变量随 自变量而 变化的大致趋势,据此可以选择合适的函数 对数据点进行 拟合. 用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式.散点图将序列显示为一组点.值由点在 图表中的位置表示.类别由图表中的不同标记表示.散点图通常用于比较跨

  • Matplotlib scatter绘制散点图的方法实现

    前言 考虑到很多同学可能还没有安装matplotlib包,这里给大家提供我常用的安装方法.首先Win键 + R,输入命令cmd打开命令行工具,再次在命令行工具中输入pip install matplotlib就可以直接安装了,安装后会提示安装成功. 一.简单散点图 1.代码 import numpy as np import matplotlib.pyplot as plt #生成散点数据 n = 1024 X = np.random.normal(0,1,n) Y = np.random.no

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • Python利用matplotlib绘制散点图的新手教程

    前言 上篇文章介绍了使用matplotlib绘制折线图,参考:https://www.jb51.net/article/198991.htm,本篇文章继续介绍使用matplotlib绘制散点图. 一.matplotlib绘制散点图 # coding=utf-8 import matplotlib.pyplot as plt years = [2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] turnovers =

  • Python中Matplotlib的点、线形状、颜色以及绘制散点图

    目录 常用颜色: 常用标记点形状: 常用线形: 绘制散点图 补充:Python散点图教程 总结 我们在Python中经常使用会用到matplotlib画图,有些曲线和点的形状.颜色信息长时间不用就忘了,整理一下便于查找. 安装matplotlib后可以查看官方说明(太长不贴出来了) from matplotlib import pyplot as plt help(plt.plot) 常用颜色: 'b'          蓝色'g'          绿色'r'          红色'c'  

随机推荐