基于Python的OCR实现示例

摘要:

近几天在做一个东西,其中需要对图像中的文字进行识别,看了前辈们的文章,找到两个较简单的方法:使用python的pytesseract库和调用百度AI平台接口。写下这篇文章做一个比较简短的记录和学习,后期如果有新内容再行补充。

1、使用python的pytesseract库

主要是安装库,比较简单,直接使用 pip install 安装即可;另外,如果进行中文识别,需要下载语言包,并配置好相应环境,具体操作可以进行百度,教程有不少。因为这个识别方法比较简单(但效果并不是很理想),下面直接贴出测试代码:

import pytesseract
from PIL import Image
img = Image.open('./testImages/test01.jpg')
pytesseract.pytesseract.tesseract_cmd = 'C:/Program Files (x86)/Tesseract-OCR/tesseract.exe'
s = pytesseract.image_to_string(img, lang='chi_sim') #不加lang参数的话,默认进行英文识别
print(s)

2、调用百度AI平台接口(有调用次数限制,通用50000次/天,学习完全够用)

这个类似于调用接口实现词法分析等操作,首先通过注册获得APP_ID、API_KEY、SECRET_KEY,然后调用接口实现OCR。由于是在线API,如果图片体积比较大,涉及到上传数据、分析数据、返回数据等一系列操作,需要一定的时间。此外,因为返回的是 dict 类型数据,所以需要对结果进行处理(这套算法是按行识别文字的,准确率较高,基本可以直接将结果进行提取和拼接)。实现起来比较简单,下面直接贴出代码:

from aip import AipOcr
APP_ID = '00000000'
API_KEY = '00000000000000000000'
SECRET_KEY = '00000000000000000000'
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

def get_file_content(filePath):
  with open(filePath, 'rb') as fp:
    return fp.read()

def image2text(fileName):
  image = get_file_content(fileName)
  dic_result = client.basicGeneral(image)
  res = dic_result['words_result']
  result = ''
  for m in res:
    result = result + str(m['words'])
  return result

getresult = image2text('./test01.jpg')
print(getresult)

小结:

主要是初次接触OCR这个领域所做的一些笔记,后续再深入进行学习。

python实现的ocr接口

import pytesseract
import requests
from PIL import Image
from PIL import ImageFilter
from StringIO import StringIO
from werkzeug.utils import secure_filename
from gevent import monkey
from gevent.pywsgi import WSGIServer
monkey.patch_all()
from flask import Flask,render_template,jsonify,request,send_from_directory
import time
import os
import base64
import random

app = Flask(__name__)
UPLOAD_FOLDER='upload'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
basedir = os.path.abspath(os.path.dirname(__file__))
ALLOWED_EXTENSIONS = set(['png','jpg','JPG','PNG'])

def allowed_file(filename):
  return '.' in filename and filename.rsplit('.',1)[1] in ALLOWED_EXTENSIONS

@app.route('/',methods=['GET'],strict_slashes=False)
def indexpage():
  return render_template('index.html')

@app.route('/',methods=['POST'],strict_slashes=False)
def api_upload():
  log = open("error.log","w+")
  file_dir = os.path.join(basedir, app.config['UPLOAD_FOLDER'])
  if not os.path.exists(file_dir):
    os.makedirs(file_dir)
  print request.headers
  print >> log, request.headers
  f = request.files['file']
  postLang = request.form.get("lang", type=str) 

  log.close()

  if f and allowed_file(f.filename):
    fname = secure_filename(f.filename)
    ext = fname.rsplit('.',1)[1]
    unix_time = int(time.time())
    new_filename = str( random.randrange(0, 10001, 2))+str(unix_time)+'.'+ext
    f.save(os.path.join(file_dir,new_filename))
    if cmp(postLang, "chi_sim"):
      strboxs = pytesseract.image_to_boxes(Image.open("/var/OCRhtml/upload/" + new_filename), lang="chi_sim")
      strdata = pytesseract.image_to_string(Image.open("/var/OCRhtml/upload/" + new_filename), lang="chi_sim")
      print "Chinese"
    else:
      strboxs = pytesseract.image_to_boxes(Image.open("/var/OCRhtml/upload/"+new_filename))
      strdata = pytesseract.image_to_string(Image.open("/var/OCRhtml/upload/"+new_filename))
    return jsonify({"errno":0, "msg":"succeed ","data":strdata,"info":strboxs})
  else:
    return jsonify({"errno":1001, "errmsg":u"failed"})

if __name__ == '__main__':
  http_server = WSGIServer(('', 80), app)
  http_server.serve_forever()

到此这篇关于基于Python的OCR实现示例的文章就介绍到这了,更多相关Python OCR 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于Python实现对PDF文件的OCR识别

    最近在做一个项目的时候,需要将PDF文件作为输入,从中输出文本,然后将文本存入数据库中.为此,我找寻了很久的解决方案,最终才确定使用tesseract.所以不要浪费时间了,我们开始吧. 1.安装tesseract 在不同的系统中安装tesseract非常容易.为了简便,我们以Ubuntu为例. 在Ubuntu中你仅仅需要运行以下命令: 这将会安装支持3种不同语言的tesseract. 2.安装PyOCR 现在我们还需要安装tesseract的Python接口.幸运的是,有许多出色的Python接

  • python 3调用百度OCR API实现剪贴板文字识别

    本程序调用百度OCR API对剪贴板的图片文字识别,配合CaptureScreen软件,可快速识别文字. #!python3 import urllib.request, urllib.parse import os, io, sys, json, socket import base64 from PIL import ImageGrab socket.setdefaulttimeout(30) def get_auth(): apikey = 'your apikey' secret_key

  • python实现百度OCR图片识别过程解析

    这篇文章主要介绍了python实现百度OCR图片识别过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import base64 import requests class CodeDemo: def __init__(self,AK,SK,code_url,img_path): self.AK=AK self.SK=SK self.code_url=code_url self.img_path=img_path self.ac

  • Python文字截图识别OCR工具实例解析

    一.简介 你一定用过那种"OCR神器",可以把图片中的文字提取出来,极大的提高工作效率. 今天,我们就来做一款实时截图识别的小工具.顾名思义,运行程序时,可以实时把你截出来的图片中的文字识别出来. 二.模块 import keyboard # 用于监控键盘按下,触发事件(pip install keyboard) import time from aip import AipOcr # 调用百度接口(pip install baidu-aip) from PIL import Imag

  • python3安装OCR识别库tesserocr过程图解

    OCR简介 OCR,即Optical Character Recognition,光学字符识别,是指通过扫描字符,然后通过其形状将其翻译成电子文本的过程,对应图形验证码来说,它们都是一些不规则的字符,这些字符是由字符稍加扭曲变换得到的内容,我们可以使用OCR技术来讲其转化为电子文本,然后将结果提取交给服务器,便可以达到自动识别验证码的过程. window环境 环境材料准备 Window10 Python-3.7.3.tgz tesserocr安装包 安装tesserocr 1.打开链接,http

  • Python3实现腾讯云OCR识别

    废话不多说,在网上找了下腾讯云OCR识别的,示例不多,用Python的还是Python2.7,花了点时间改成Python3的. 先上图,腾讯自己的示例图: 下面是代码: import requests import hmac import hashlib import base64 import time import random import re appid = "你自己的appid" bucket = " 这个是优图上面的,可以不填" #参考本文开头提供的链

  • 初探利用Python进行图文识别(OCR)

    话说什么是OCR????? 简介 OCR技术是光学字符识别的缩写(Optical Character Recognition),是通过扫描等光学输入方式将各种票据.报刊.书籍.文稿及其它印刷品的文字转化为图像信息,再利用文字识别技术将图像信息转化为可以使用的计算机输入技术.可应用于银行票据.大量文字资料.档案卷宗.文案的录入和处理领域.适合于银行.税务等行业大量票据表格的自动扫描识别及长期存储.相对一般文本,通常以最终识别率.识别速度.版面理解正确率及版面还原满意度4个方面作为OCR技术的评测依

  • Python3使用腾讯云文字识别(腾讯OCR)提取图片中的文字内容实例详解

    百度OCR体验地址: https://ai.baidu.com/tech/imagerecognition/general 腾讯OCR体验地址: https://cloud.tencent.com/act/event/ocrdemo 测试结果是:腾讯的效果要比百度的好 腾讯云目前额度是: 每个接口 1,000次/月免费,有6个文字识别的接口,一共是6,000次/月 百度接口调用之前写过文章 python实现百度OCR图片识别过程解析 使用步骤 1.注册账号: https://cloud.tenc

  • python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别

    前言 写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果

  • 如何使用Python进行OCR识别图片中的文字

    朋友需要一个工具,将图片中的文字提取出来.我帮他在网上找了一些OCR的应用,都不好用.所以准备自己研究,写一个Web APP供他使用. OCR1,全称Optical character recognition,或者optical character reader,中文译名叫做光学文字识别.它是把图像文件中的手写文本,打印文本转换为机器编码文本的一种方法. OCR技术广泛用于识别打印纸张中的文字数据 -- 比如护照,支票,银行声明,收据,统计表单,邮件等.OCR的早期版本,需要对图片中的每个文字都

随机推荐