Python中快速掌握Data Frame的常用操作

掌握Data Frame的常用操作

一. 查看DataFrame的常用属性

DataFrame基础属性有:values(元素)、index(索引)、columns(列名) 、dtypes(类型)、size(元素个数)、ndim(维度数)和 shape(形状大小尺寸),还有使用T属性 进行转置

import pandas as pd
detail=pd.read_excel('E:\data\meal_order_detail.xlsx') #读取数据,使用read_excel 函数调用
# print(detail)
print("索引",detail.index)
print("所以 值 :",detail.values)
print("所以列名:",detail.columns)
print("数据类型:",detail.dtypes)
print("元素个数:",detail.size)
print("维度:",detail.ndim)
print("形状大小 尺寸:",detail.shape)
#使用T属性 进行转置
print("转置前的形状:",detail.shape)数据
print("转置后的形状:",detail.T.shape)

二. 查改增删DataFrame数据

查看访问DataFramezhon'的数据
(1.1)DataFrame数据的基本查看方式

#使用字典访问方式
order_id=detail['order_id']
print("订单详情表的order_id的形状:",order_id.shape)
#使用访问属性的方式
dishes_name=detail.dishes_name
print("订单详情表中的dishes_name的形状:",dishes_name.shape)
#DataFrame 单列多行的数据获取
dishes_name5=detail['dishes_name'][:5]
print(dishes_name5)
#多列多行数据
orderDish=detail[['order_id','dishes_name']][:5]
print(orderDish)
#访问多行数据
order5=detail[:][1:6]
print("订单详情表中的1~6行元素的数据:\n",order5)

#使用DataFrame的head和tail方法获取多行数据
print('订单详情表中前5行数据:\n',detail.head())#head()里面没有参数的话,默认为5行
print('订单详情表中后5行数据:\n',detail.tail()) #tail()里面没有参数的话,默认为5行

(1.2) .DataFrame的loc和iloc访问方式;

dishes_name1=detail.loc[:,'dishes_name'] #DataFrame.loc[行索引名称或条件,列索引名称]
print("使用loc提取dishes_name列的size:",dishes_name1.size)
dishes_name2=detail.iloc[:,3] #DataFrame.iloc[行索引位置,列索引位置]
print("使用iloc提取第3列的size:",dishes_name2.size)

#使用loc、iloc 实现多列切片
orderDish1=detail.loc[:,['order_id','dishes_name']]
print(orderDish1.size)
orderDish2=detail.iloc[:,[1,3]]
print(orderDish2.size)
#使用loc、iloc 实现花式切片
print("列名为order_id和dishes_name 的行名为3的数据:\n",detail.loc[3,['order_id','dishes_name']])
print('列名为order_id和dishes_name 行名为2、3、4、5、6的数据为:\n',detail.loc[2:6,['order_id','dishes_name']])
print('列名1和3,行位置为3的数据为:\n',detail.iloc[3,[1,3]]) #这里为什么不可以loc函数,
               #因为loc函数传入的是列索引的名称(或行的名称或条件),而iloc传入的是位置
print('列位置为1和3,行位置为2,3,4,5,6的数据和:\n',detail.iloc[2:7,[1,3]])#这里是位置索引,7是取不到的
#使用loc和iloc函数实现条件切片
print('detail中order_id为458的dishes_name为:\n',detail.loc[detail['order_id']==458,['order_id','dishes_name']]) #使用了loc
print("detail中order_id为458 的第1、5列的数据为:\n",detail.iloc[(detail['order_id']==458).values,[1,5]])#values 获取元素 #使用iloc函数

(1.3).ix切片方法

#使用loc、iloc、ix 实现切片 比较(DataFrame.ix[行的索引或位置或条件,列索引名称和位置])
print('列名为dishes_name行名为2,3,4,5,6的数据为:\n',detail.loc[2:6,['dishes_name']])
print('列位置为5行名为2~6的数据为:\n',detail.iloc[2:6,5])
print('列位置为5行名为2~6的数据为:\n',detail.ix[2:6,5])

2.更改DataFame中的数据

#将order_id为458 的改成 45800
detail.loc[detail['order_id']==458,'order_id'] = 45800 #45800 这里 没有单引号的
print('更改后detail中的order_id为 458 的:\n',detail.loc[detail['order_id']==458,'order_id'])
print('更改后detail中的order_id为 45800 的:\n',detail.loc[detail['order_id']==45800,'order_id'])
detail.loc[detail['order_id']==45800,'order_id'] = 458

3.为DataFrame增添数据

#新增一列非定值
detail['payment']=detail['counts']*detail['amounts']
print('detail新增列payment的前5行数据为:\n',detail['payment'].head())
#新增一列定值
detail['pay_way']='现金支付'
print('detail新增列的前5行的数据为:\n',detail['pay_way'].head())
``4.删除某行或某列的数据(drop)
#删除某列
print('删除pay_way前 detail中的列索引为:\n',detail.columns)
detail.drop(labels='pay_way',axis=1,inplace=True)
print('删除pay_way后 detail中的列索引为:\n',detail.columns)
#删除某几行
print('删除1~10行 前 detail的长度:',len(detail))
detail.drop(labels=range(1,11),axis=0,inplace=True)
print('删除1~10行 后 detail的长度:',len(detail))

三. 描述分析DataFrame数据

1.数值特征的描述性统计
describe()函数描述性统计
2.类别类特征的描述性统计
object类型,categroy类型

到此这篇关于Python中快速掌握Data Frame的常用操作的文章就介绍到这了,更多相关Python Data Frame的常用操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中pandas库中DataFrame对行和列的操作使用方法示例

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S

  • python dataframe常见操作方法:实现取行、列、切片、统计特征值

    实例如下所示: # -*- coding: utf-8 -*- import numpy as np import pandas as pd from pandas import * from numpy import * data = DataFrame(np.arange(16).reshape(4,4),index = list("ABCD"),columns=list('wxyz')) print data print data[0:2] #取前两行数据 print'+++++

  • python pandas dataframe 行列选择,切片操作方法

    SQL中的select是根据列的名称来选取:Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取.相关函数如下: 1)loc,基于列label,可选取特定行(根据行index): 2)iloc,基于行/列的position: 3)at,根据指定行index及列label,快速定位DataFrame的元素: 4)iat,与at类似,不同的是根据position来定位的: 5)ix,为loc与i

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • python pandas库中DataFrame对行和列的操作实例讲解

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S

  • Python pandas DataFrame操作的实现代码

    1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a','b','c','d']} >>> df = pd.DataFrame(dict1) >>> df col1 col2 0 1 a 1 2 b 2 5 c 3 7 d 2. 从列表创建Dataframe (先把列表转化为字典,再把字典转化为DataFrame) >

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • Python中快速掌握Data Frame的常用操作

    掌握Data Frame的常用操作 一. 查看DataFrame的常用属性 DataFrame基础属性有:values(元素).index(索引).columns(列名) .dtypes(类型).size(元素个数).ndim(维度数)和 shape(形状大小尺寸),还有使用T属性 进行转置 import pandas as pd detail=pd.read_excel('E:\data\meal_order_detail.xlsx') #读取数据,使用read_excel 函数调用 # pr

  • Python中字典的基础介绍及常用操作总结

    目录 1.字典的介绍 2.访问字典的值 (一)根据键访问值 (二)通过get()方法访问值 3.修改字典的值 4.添加字典的元素(键值对) 5.删除字典的元素 6.字典常见操作 1.len 测量字典中键值对的个数 2. keys 返回一个包含字典所有KEY的列表 3. values 返回一个包含字典所有value的列表 4. items 返回一个包含所有(键,值)元祖的列表 5.遍历字典的key(键) 6.遍历字典的value(值) 7.遍历字典的items(元素) 8.遍历字典的items(键

  • Python中元组的基础介绍及常用操作总结

    目录 1.元组的介绍 2.访问元组 3.修改元组(不可以修改的) 4.元组的内置函数有count,index 5.类型转换 1.将元组转换为列表 2.将元组转换为集合 1.元组的介绍 Python的元组与列表类似,不同之处在于元组的元素不能修改. 元组使用小括号,列表使用方括号. 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可. 元组的格式: tup=('a','b','c','d') 2.访问元组 元组可以使用下标索引来访问元组中的值,下标索引从0开始 例如: tup=('a','

  • Python中字符串的基础介绍及常用操作总结

    目录 1.字符串的介绍 2.字符串的下标 3.字符串切片 4.字符串find()操作 5.字符串index()操作 6.字符串count()操作 7.字符串replace()操作 8.字符串split()操作 9.字符串startswith()操作 10.字符串endswith()操作 11.字符串upper()操作 12.字符串lower()操作 13.字符串title()操作 14.字符串capitalize()操作 15.字符串strip()操作 16.字符串rfind()操作 17.字符

  • R语言中data.frame的常用操作总结

    前言:近段时间学习R语言用到最多的数据格式就是data.frame,现对data.frame常用操作进行总结,其中函数大部分来自dplyr包,该包由Hadley Wickham所作,主要用于数据的清洗和整理. 一.创建 data.frame创建较为容易,调用data.frame函数即可.本文创建一个关于学生成绩的数据框,接下来大部分操作都对该数据框进行,其中学生成绩随机产生 > library(dplyr) #导入dplyr包 > options(digits = 0) #保留整数 >

  • 详解Python中元组的三个不常用特性

    目录 1. 引言 2. 举个栗子 3. 创建包含单一元素的元组 4. 使用下划线和*来unpack元组 5. 使用命名元组 6. 总结 1. 引言 元组是Python中一种重要的内置数据类型.与列表一样,我们经常使用元组将多个对象保存为相应的数据容器.然而,与列表不同的是元组的不变性——一个不可改变的数据序列. 2. 举个栗子 下面的代码片段向我们展示了元组的一些常见用法. response = (404, "Can't access website") response_code =

  • Python xlrd/xlwt 创建excel文件及常用操作

    一.创建excel代码 备注:封装好了(可直接调用) """ -*- coding:utf-8 -*- @Time :2020/8/20 21:02 @Author :Jarvis @File :jar_excel_util.py @Version:1.0 """ from typing import List import xlwt class JarExcelUtil: def __init__(self, header_list: List

  • Python flask sqlalchemy的简单使用及常用操作

    目录 前言 flask sqlalchemy的配置使用 sqlalchemy的增删改查 查询数据 增加数据 修改数据 删除数据 总结 前言 说到面向对象,大家都不陌生.关系型数据库也是后端日常用来存储数据的,但数据库是关系型的,因此,ORM通过对象模型和数据库的关系模型之间建立映射,我们就能像操作对象一样来操作数据库. ORM的优点主要是面向对象编程,不需写原生SQL,用操作对象的方式访问数据.当然,缺点就是当遇到复杂的操作时,ORM就不那么好写了,还有就是加了一层映射,执行效率低于原生sql.

  • Python和Excel的完美结合的常用操作案例汇总

    目录 前言 Python和Excel的交互 vlookup函数 绘图 柱状图 雷达图 前言 在以前,商业分析对应的英文单词是Business Analysis,大家用的分析工具是Excel,后来数据量大了,Excel应付不过来了(Excel最大支持行数为1048576行),人们开始转向python和R这样的分析工具了,这时候商业分析对应的单词是Business Analytics. 其实python和Excel的使用准则一样,都是[We don't repeat ourselves],都是尽可能

  • Python中的Numpy 面向数组编程常见操作

    目录 数组编程 简单例子 逻辑条件作为数组操作 数学和统计方法 布尔数组的方法 排序 唯一值和其他的逻辑集合 数组编程 使用Numpy数组可以使你利用简单的数组表达式完成多项数据操作任务,而不需要编写大量的循环,这个极大的帮助了我们高效的解决问题.我们都知道向量化的数组操作比纯Python的等价实现在速度这一方面快很多,至于多少(一到两个数量级)甚至更多,生活需要慢节奏,但是计算就不可以了,掌握高效的计算模型,可以让数据分析如虎添翼! 简单例子 我们生成从-3.14--3.14,按照0.01的间

随机推荐