NumPy 矩阵乘法的实现示例

NumPy 支持的几类矩阵乘法也很重要。

元素级乘法

你已看过了一些元素级乘法。你可以使用 multiply 函数或 * 运算符来实现。回顾一下,它看起来是这样的:

m = np.array([[1,2,3],[4,5,6]])
m
# 显示以下结果:
# array([[1, 2, 3],
#  [4, 5, 6]])

n = m * 0.25
n
# 显示以下结果:
# array([[ 0.25, 0.5 , 0.75],
#  [ 1. , 1.25, 1.5 ]])

m * n
# 显示以下结果:
# array([[ 0.25, 1. , 2.25],
#  [ 4. , 6.25, 9. ]])

np.multiply(m, n) # 相当于 m * n
# 显示以下结果:
# array([[ 0.25, 1. , 2.25],
#  [ 4. , 6.25, 9. ]])

矩阵乘积

要获得矩阵乘积,你可以使用 NumPy 的 matmul 函数。

如果你有兼容的形状,那就像这样简单:

a = np.array([[1,2,3,4],[5,6,7,8]])
a
# 显示以下结果:
# array([[1, 2, 3, 4],
#  [5, 6, 7, 8]])
a.shape
# 显示以下结果:
# (2, 4)

b = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
b
# 显示以下结果:
# array([[ 1, 2, 3],
#  [ 4, 5, 6],
#  [ 7, 8, 9],
#  [10, 11, 12]])
b.shape
# 显示以下结果:
# (4, 3)

c = np.matmul(a, b)
c
# 显示以下结果:
# array([[ 70, 80, 90],
#  [158, 184, 210]])
c.shape
# 显示以下结果:
# (2, 3)

如果你的矩阵具有不兼容的形状,则会出现以下错误:

np.matmul(b, a)
# 显示以下错误:
# ValueError: shapes (4,3) and (2,4) not aligned: 3 (dim 1) != 2 (dim 0)

NumPy 的 dot 函数

有时候,在你以为要用 matmul 函数的地方,你可能会看到 NumPy 的 dot 函数。事实证明,如果矩阵是二维的,那么 dot 和 matmul 函数的结果是相同的。

所以这两个结果是等价的:

a = np.array([[1,2],[3,4]])
a
# 显示以下结果:
# array([[1, 2],
#  [3, 4]])

np.dot(a,a)
# 显示以下结果:
# array([[ 7, 10],
#  [15, 22]])

a.dot(a) # you can call你可以直接对 `ndarray` 调用 `dot`
# 显示以下结果:
# array([[ 7, 10],
#  [15, 22]])

np.matmul(a,a)
# array([[ 7, 10],
#  [15, 22]])

虽然这两个函数对于二维数据返回相同的结果,但在用于其他数据形状时,你应该谨慎选择。你可以在 matmul和 dot 文档中详细了解它们的差异,并找到其他 NumPy 函数的链接。

到此这篇关于NumPy 矩阵乘法的实现示例的文章就介绍到这了,更多相关NumPy 矩阵乘法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 对numpy 数组和矩阵的乘法的进一步理解

    1.当为array的时候,默认d*f就是对应元素的乘积,multiply也是对应元素的乘积,dot(d,f)会转化为矩阵的乘积, dot点乘意味着相加,而multiply只是对应元素相乘,不相加 2.当为mat的时候,默认d*f就是矩阵的乘积,multiply转化为对应元素的乘积,dot(d,f)为矩阵的乘积 3. 混合时候的情况,一般不要混合 混合的时候默认按照矩阵乘法的, multiply转化为对应元素的乘积,dot(d,f)为矩阵的乘积 总结:数组乘法默认的是点乘,矩阵默认的是矩阵乘法,混

  • 细说NumPy数组的四种乘法的使用

    当孔乙己说回字有四样写法的时候,相信各位都是这样的表情吧? 但是,如果孔乙己说NumPy数组有四种乘法的时候,各位大约就是这样的表情了吧? 实际上,NumPy数组乘法远不止四种.为了在写作和阅读时保持清晰的逻辑和清醒的头脑,本文仅对四种最常见的数组乘法给出详细说明,并用一道数学题来演示向量点乘和叉乘的用法. 1. 星乘(*) 先声明一下:星乘这个说法,是我自己创造的,因为我实在不知道数组的这种乘法有没有其他高大上的名字,只好用运算符来表示了.所谓数组星乘,就是数组的对应元素相乘,这也是初学Num

  • NumPy 矩阵乘法的实现示例

    NumPy 支持的几类矩阵乘法也很重要. 元素级乘法 你已看过了一些元素级乘法.你可以使用 multiply 函数或 * 运算符来实现.回顾一下,它看起来是这样的: m = np.array([[1,2,3],[4,5,6]]) m # 显示以下结果: # array([[1, 2, 3], # [4, 5, 6]]) n = m * 0.25 n # 显示以下结果: # array([[ 0.25, 0.5 , 0.75], # [ 1. , 1.25, 1.5 ]]) m * n # 显示以

  • Python编程给numpy矩阵添加一列方法示例

    首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.ones(3) c = np.array([[1,2,3,1],[4,5,6,1],[7,8,9,1]]) PRint(a) print(b) print(c) [[1 2 3] [4 5 6] [7 8 9]] [ 1. 1. 1.] [[1 2 3 1] [4

  • python中numpy矩阵的零填充的示例代码

    目录 需求: 一.再new一个更大的所需要的矩阵大小 二.pad函数 其他想法 需求: 对于图像处理中的一些过程,我需要对读取的numpy矩阵进行size的扩充,比如原本是(4,6)的矩阵,现在需要上下左右各扩充3行,且为了不影响数值计算,都用0填充. 比如下图,我有一个4x5大小的全1矩阵,但是现在我要在四周都加上3行的0来扩充大小,最后扩充完还要对原区域进行操作. 方法: 想到了几种方法,记录一下. 一.再new一个更大的所需要的矩阵大小 a = np.ones((4,5)) #假设原矩阵是

  • numpy数组拼接简单示例

    NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: ·实际的数据 ·描述这些数据的元数据 大部分操作仅针对于元数据,而不改变底层实际的数据. 关于NumPy数组有几点必需了解的: ·NumPy数组的下标从0开始. ·同一个NumPy数组中所有元素的类型必须是相同的. NumPy数组属性 在详细介绍NumPy数组之前.先详细介绍下NumPy数组的基本属性.NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是

  • python 基于卡方值分箱算法的实现示例

    原理很简单,初始分20箱或更多,先确保每箱中都含有0,1标签,对不包含0,1标签的箱向前合并,计算各箱卡方值,对卡方值最小的箱向后合并,代码如下 import pandas as pd import numpy as np import scipy from scipy import stats def chi_bin(DF,var,target,binnum=5,maxcut=20): ''' DF:data var:variable target:target / label binnum:

  • Python 实现交换矩阵的行示例

    如下所示: # TODO r1 <---> r2 # 直接修改参数矩阵,无返回值 def swapRows(M, r1, r2): M[r1],M[r2] = M[r2],M[r1] pass 以上这篇Python 实现交换矩阵的行示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 在numpy矩阵中令小于0的元素改为0的实例

    如下所示: >>> import numpy as np >>> a = np.random.randint(-5, 5, (5, 5)) >>> a array([[-4, -4, -5, 2, 1], [-1, -2, -1, 3, 3], [-1, -2, 3, -5, 3], [ 0, -3, -5, 1, -4], [ 0, 3, 1, 3, -4]]) # 方式一 >>> np.maximum(a, 0) array([[

  • 详解numpy矩阵的创建与数据类型

    Numpy是python常用的一个类库,在python的使用中及其常见,广泛用在矩阵的计算中,numpy对矩阵的操作与纯python比起来速度有极大的差距. 一. 构造矩阵 矩阵的构造可以有多种方法: 1.使用python中的方法构造矩阵 - 生成一维矩阵 # 使用python自带的range()方法生成一个矩阵 a = list(range(100))#range()产生从0-99的一个列表 print(a) - 生成二维及多维矩阵 # 使用python自带的range()方法生成一个矩阵 a

  • Python:合并两个numpy矩阵的实现

    numpy是Python用来科学计算的一个非常重要的库,numpy主要用来处理一些矩阵对象,可以说numpy让Python有了Matlab的味道. 如何利用numpy来合并两个矩阵呢?我们可以利用numpy向我们提供的两个函数来进行操作. #hstack()在行上合并 np.hstack((a,b)) #vstack()在列上合并 np.vstack((a,b)) 以上a,b分别为两个numpy矩阵.hstack在行上合并,vstack在列上合并. 这篇Python:合并两个numpy矩阵的实现

  • python numpy 矩阵堆叠实例

    在实际操作中,遇到了矩阵堆叠的操作,本来想着自己写一个函数,后来想,应该有库函数,于是一阵找寻 import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6]) np.stack((a,b)) #默认行堆叠 输出: array([[1, 2, 3], [4, 5, 6]]) np.vstack((a, b)) 输出: array([[1, 2, 3], [4, 5, 6]]) np.hstack((a, b)) 输出: array([1

随机推荐