MySQL 百万级数据的4种查询优化方式

一.limit越往后越慢的原因

当我们使用limit来对数据进行分页操作的时,会发现:查看前几页的时候,发现速度非常快,比如 limit 200,25,瞬间就出来了。但是越往后,速度就越慢,特别是百万条之后,卡到不行,那这个是什么原理呢。先看一下我们翻页翻到后面时,查询的sql是怎样的:

select * from t_name where c_name1='xxx' order by c_name2 limit 2000000,25;

这种查询的慢,其实是因为limit后面的偏移量太大导致的。比如像上面的 limit 2000000,25 ,这个等同于数据库要扫描出 2000025条数据,然后再丢弃前面的 20000000条数据,返回剩下25条数据给用户,这种取法明显不合理。

二.百万数据模拟

1、创建员工表和部门表,编写存储过程插数据

/*部门表,存在则进行删除 */
drop table if EXISTS dep;
create table dep(
    id int unsigned primary key auto_increment,
    depno mediumint unsigned not null default 0,
    depname varchar(20) not null default "",
    memo varchar(200) not null default ""
);

/*员工表,存在则进行删除*/
drop table if EXISTS emp;
create table emp(
    id int unsigned primary key auto_increment,
    empno mediumint unsigned not null default 0,
    empname varchar(20) not null default "",
    job varchar(9) not null default "",
    mgr mediumint unsigned not null default 0,
    hiredate datetime not null,
    sal decimal(7,2) not null,
    comn decimal(7,2) not null,
    depno mediumint unsigned not null default 0
);
/* 产生随机字符串的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_string;
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
    DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmlopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
    SET return_str = CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
    SET i = i+1;
    END WHILE;
    RETURN return_str;
END $
DELIMITER;

/*产生随机部门编号的函数*/
DELIMITER $
drop FUNCTION if EXISTS rand_num;
CREATE FUNCTION rand_num() RETURNS INT(5)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET i = FLOOR(100+RAND()*10);
    RETURN i;
END $
DELIMITER;
/*建立存储过程:往emp表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_emp;
CREATE PROCEDURE insert_emp(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    /*set autocommit =0 把autocommit设置成0,把默认提交关闭*/
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO emp(empno,empname,job,mgr,hiredate,sal,comn,depno) VALUES ((START+i),rand_string(6),'SALEMAN',0001,now(),2000,400,rand_num());
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

/*建立存储过程:往dep表中插入数据*/
DELIMITER $
drop PROCEDURE if EXISTS insert_dept;
CREATE PROCEDURE insert_dept(IN START INT(10),IN max_num INT(10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i+1;
    INSERT  INTO dep( depno,depname,memo) VALUES((START+i),rand_string(10),rand_string(8));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END $
DELIMITER;

2.执行存储过程

/*插入120条数据*/
call insert_dept(1,120);
/*插入500W条数据*/
call insert_emp(0,5000000);

插入500万条数据可能很慢

三.4种查询方式

1.普通limit分页

/*偏移量为100,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
/*偏移量为4800000,取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25; 

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25;
受影响的行: 0
时间: 0.001s
[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25;
受影响的行: 0
时间: 12.275s

越往后,查询效率越慢

2.使用索引覆盖+子查询优化

因为我们有主键id,并且在上面建了索引,所以可以先在索引树中找到开始位置的 id值,再根据找到的id值查询行数据。

/*子查询获取偏移100条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;

/*子查询获取偏移4800000条的位置的id,在这个位置上往后取25*/
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;

执行结果

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 100,1)
order by a.id limit 25;
受影响的行: 0
时间: 0.106s

[SQL]
SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id >= (select id from emp order by id limit 4800000,1)
order by a.id limit 25;
受影响的行: 0
时间: 1.541s

3.起始位置重定义

适用于主键是自增主键的表

/*记住了上次的分页的最后一条数据的id是100,这边就直接跳过100,从101开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;

/*记住了上次的分页的最后一条数据的id是4800000,这边就直接跳过4800000,从4800001开始扫描表*/
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 100 order by a.id limit 25;
受影响的行: 0
时间: 0.001s

[SQL]
SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname
from emp a left join dep b on a.depno = b.depno
where a.id > 4800000
order by a.id limit 25;
受影响的行: 0
时间: 0.000s

这个效率是最好的,无论怎么分页,耗时基本都是一致的,因为他执行完条件之后,都只扫描了25条数据。

4,降级策略(百度的做法)

这个策略是最简单有效的,因为一般的大数据查询都会有搜索条件,没人会关注100页以后的内容,当用户查询页数过大时,给它返回一个错误就行了,例如百度就只能搜索到76页

以上就是MySQL 百万级数据的4种查询优化方式的详细内容,更多关于MySQL 百万级数据查询优化的资料请关注我们其它相关文章!

(0)

相关推荐

  • MySQL查询优化之查询慢原因和解决技巧

    在做开发的朋友特别是和mysql有接触的朋友会碰到有时mysql查询很慢,当然我指的是大数据量百万千万级了,不是几十条了, 下面我们来看看解决查询慢的办法 会经常发现开发人员查一下没用索引的语句或者没有limit n的语句,这些没语句会对数据库造成很大的影响,例如一个几千万条记录的大表要全部扫描,或者是不停的做filesort,对数据库和服务器造成io影响等.这是镜像库上面的情况. 而到了线上库,除了出现没有索引的语句,没有用limit的语句,还多了一个情况,mysql连接数过多的问题.说到这里

  • MySQL查询优化必备知识点总结

    前言 查询优化本就不是一蹴而就的,需要学会使用对应的工具.借鉴别人的经验来对SQL进行优化,并且提升自己. 先来巩固一下索引的优点,检索数据快.查询稳定.存储具有顺序性避免服务器建立临时表.将随机的I/O变为有序的I/O. 但索引一旦创建的不规范就会造成以下问题,占用额外空间,浪费内存,降低数据的增.删.改性能. 所以只有在理解索引数据结构的基础上才能创建出高效的索引. **本文所有操作均在MySQL8.0.12** 一.创建索引规范 在学习索引优化之前,需要对创建索引的规范有一定的了解,此规范

  • 详解MySQL 联合查询优化机制

    MySQL 联合查询执行策略. 以一个 UNION 查询为例,MySQL 执行 UNION 查询时,会把他们当做一系列的单个查询语句,然后把对应的结果放入到临时表中,最终再读出来返回.在 MySQL中,每个独立的查询都是一个联合查询,从临时表读取返回结果也一样. 这种情形下,MySQL 的联合查询执行很简单--它将这里的联合查询当做是嵌套循环的联合查询.这意味着 MySQL 会运行一个循环去从数据表读取数据行,然而在运行一个嵌套循环从下一个表读取匹配的数据行.这个过程一直持续,直到找到联合查询中

  • Mysql慢查询优化方法及优化原则

    1.日期大小的比较,传到xml中的日期格式要符合'yyyy-MM-dd',这样才能走索引,如:'yyyy'改为'yyyy-MM-dd','yyyy-MM'改为'yyyy-MM-dd'[这样MYSQL会转换为日期类型] 2.条件语句中无论是等于.还是大于小于,WHERE左侧的条件查询字段不要使用函数或表达式或数学运算 3.WHERE条件语句尝试着调整字段的顺序提升查询速度,如把索引字段放在最前面.把查询命中率高的字段置前等 4.保证优化SQL前后其查询结果是一致的 5.在查询的时候通过将EXPLA

  • 理解MySQL查询优化处理过程

    MySQL查询优化需要经过解析.预处理和优化三个步骤.在这些过程中,都有可能发生错误.本篇文章不会深入讨论错误处理,而是帮助理解 MySQL 执行查询的方式,以便可以写出更好的查询语句. 解析器和预处理器 一开始,MySQL 的解析器将查询语句拆分成一系列指令并从中构建一棵"解析树".解析器使用 MySQL 的SQL 语法去翻译和验证查询语句.例如,解析器保证了查询中的指令是有效且次序正确,并且会检查那种类似字符串引号未配对的错误. 预处理器则检查构建好的解析树中那些解析器无法处理的语

  • MySQL千万级大数据SQL查询优化知识点总结

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null 可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否

  • 通过MySQL慢查询优化MySQL性能的方法讲解

    随着访问量的上升,MySQL数据库的压力就越大,几乎大部分使用MySQL架构的web应用在数据库上都会出现性能问题,通过mysql慢查询日志跟踪有问题的查询非常有用,可以分析出当前程序里有很耗费资源的sql语句. 慢查询日志我们可以通过my.cnf文件设置开启,下面先来看一下相关参数的意义 log-slow-queries <slow_query_log_file> 存放slow query日志的文件.你必须保证mysql server进程mysqld_safe进程用户对该文件有w权限. lo

  • MySQL 使用自定义变量进行查询优化

    优化排序查询 自定义变量的一个重要特性是你可以同时将该变量的数学计算后的结果再赋值给该变量,类似于我们的 i = i + 1这种方式.下面是一个用于计算数据表行号的例子: SET @rownum := 0; SELECT actor_id, @rownum := @rownum + 1 AS rownum FROM sakila.actor LIMIT 3; actor_id rownum 1 1 2 2 3 3 得到的结果也许看起来没什么意义,这是因为主键是从1自增的,因此行号和主键值是一样的

  • MySQL之select in 子查询优化的实现

    下面的演示基于MySQL5.7.27版本 一.关于MySQL子查询的优化策略介绍: 子查询优化策略 对于不同类型的子查询,优化器会选择不同的策略. 1. 对于 IN.=ANY 子查询,优化器有如下策略选择: semijoin Materialization exists 2. 对于 NOT IN.<>ALL 子查询,优化器有如下策略选择: Materialization exists 3. 对于 derived 派生表,优化器有如下策略选择: derived_merge,将派生表合并到外部查询

  • MySQL百万级数据分页查询优化方案

    当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询.对于数据库分页查询,也有很多种方法和优化的点.下面简单说一下我知道的一些方法. 准备工作 为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明. 表名:order_history 描述:某个业务的订单历史表 主要字段:unsigned int id,tinyint(4) int type 字段情况:该表一共37个字段,不包含text等大型数组,最大为varcha

  • mysql查询优化之100万条数据的一张表优化方案

    1.两种查询引擎查询速度(myIsam 引擎 ) InnoDB 中不保存表的具体行数,也就是说,执行select count(*) from table时,InnoDB要扫描一遍整个表来计算有多少行. MyISAM只要简单的读出保存好的行数即可. 注意的是,当count(*)语句包含 where条件时,两种表的操作有些不同,InnoDB类型的表用count(*)或者count(主键),加上where col 条件.其中col列是表的主键之外的其他具有唯一约束索引的列.这样查询时速度会很快.就是可

随机推荐