解决pytorch 损失函数中输入输出不匹配的问题

一、pytorch 损失函数中输入输出不匹配问题

File "C:\Users\Rain\AppData\Local\Programs\Python\Anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__  result = self.forward(*input, **kwargs)

File "C:\Users\Rain\AppData\Local\Programs\Python\Anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\modules\loss.py", line 500, in forward reduce=self.reduce)
 
File "C:\Users\Rain\AppData\Local\Programs\Python\Anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\functional.py", line 1514, in binary_cross_entropy_with_logits
 
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
 
ValueError: Target size (torch.Size([32])) must be the same as input size (torch.Size([32,2]))

原因

input 和 target 尺寸不匹配

解决方案:

将target转为onehot

例如:

one_hot = torch.nn.functional.one_hot(masks, num_classes=args.num_classes)

二、Pytorch遇到权重不匹配的问题

最近,楼主在pytorch微调模型时遇到

size mismatch for fc.weight: copying a param with shape torch.Size([1000, 2048]) from checkpoint, the shape in current model is torch.Size([2, 2048]).

size mismatch for fc.bias: copying a param with shape torch.Size([1000]) from checkpoint, the shape in current model is torch.Size([2]).

这个是因为楼主下载的预训练模型中的全连接层是1000类别的,而楼主本人的类别只有2类,所以会报不匹配的错误

解决方案:

从报错信息可以看出,是fc层的权重参数不匹配,那我们只要不load 这一层的参数就可以了。

net = se_resnet50(num_classes=2)
pretrained_dict = torch.load("./senet/seresnet50-60a8950a85b2b.pkl")
model_dict = net.state_dict()
# 重新制作预训练的权重,主要是减去参数不匹配的层,楼主这边层名为“fc”
pretrained_dict = {k: v for k, v in pretrained_dict.items() if (k in model_dict and 'fc' not in k)}
# 更新权重
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决pytorch 交叉熵损失输出为负数的问题

    网络训练中,loss曲线非常奇怪 交叉熵怎么会有负数. 经过排查,交叉熵不是有个负对数吗,当网络输出的概率是0-1时,正数.可当网络输出大于1的数,就有可能变成负数. 所以加上一行就行了 out1 = F.softmax(out1, dim=1) 补充知识:在pytorch框架下,训练model过程中,loss=nan问题时该怎么解决? 当我在UCF-101数据集训练alexnet时,epoch设为100,跑到三十多个epoch时,出现了loss=nan问题,当时是一脸懵逼,在查阅资料后,我通过

  • Pytorch 的损失函数Loss function使用详解

    1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import

  • pytorch中常用的损失函数用法说明

    1. pytorch中常用的损失函数列举 pytorch中的nn模块提供了很多可以直接使用的loss函数, 比如MSELoss(), CrossEntropyLoss(), NLLLoss() 等 官方链接: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html pytorch中常用的损失函数 损失函数 名称 适用场景 torch.nn.MSELoss() 均方误差损失 回归 torch.nn.L1Loss() 平

  • 解决pytorch 损失函数中输入输出不匹配的问题

    一.pytorch 损失函数中输入输出不匹配问题 File "C:\Users\Rain\AppData\Local\Programs\Python\Anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__  result = self.forward(*input, **kwargs) File "C:\Users\Ra

  • 解决PyTorch与CUDA版本不匹配的问题

    1.CUDA驱动和CUDA Toolkit对应版本 表一:CUDA驱动及CUDA Toolkit最高对应版本 最新可查阅官方文档 注:驱动是向下兼容的,其决定了可安装的CUDA Toolkit的最高版本. 2.CUDA Toolkit版本及其可用PyTorch对应版本(参考官网) 表二:CUDA Toolkit版本及可用PyTorch对应关系 CUDAToolkit版本 可用PyTorch版本 7.5 0.4.1 ,0.3.0, 0.2.0,0.1.12-0.1.6 8.0 1.1.0,1.0.

  • 解决Pytorch训练过程中loss不下降的问题

    在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题.出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等.不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配. 下面是我的代码: loss_function = torch.nn.MSE_loss() optimizer.zero_grad() output = model(x_train) loss = loss_function(output, y_train)

  • 解决pytorch GPU 计算过程中出现内存耗尽的问题

    Pytorch GPU运算过程中会出现:"cuda runtime error(2): out of memory"这样的错误.通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop".在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息. 下面举个栗子: 上代

  • grep中使用"\d"匹配数字不成功的原因解决

    首先正则表达式分为三类(man grep可以看到,分别是basic RegExs,extended RegExs,perl RegExs) 正则表达式:在计算机科学中,是指一个用来描述或者匹配一系列符合某个句法规则的字符串的单个字符串.在很多文本编辑器或其他工具里,正则表达式通常被用来检索或替换那些符合某个模式的文本内容.正则表达式这个概念最初是由Unix中的工具软件(例如sed和grep)普及开的. 一.正则表达式分类: 1.基本的正则表达式(Basic Regular Expression

  • Laravel5中实现模糊匹配加多条件查询功能的方法

    本文实例讲述了Laravel5中实现模糊匹配加多条件查询功能的方法.分享给大家供大家参考,具体如下: 方法1. ORM模式 public function ReportAccurate($data) { if(is_array($data)) { $where = $this->whereAll($data); return $where; } else { return false; } } /*多条件模糊*/ public function whereAll($data) { $query

  • 解决在Laravel 中处理OPTIONS请求的问题

    前面已经说过可以通过中间件来处理OPTIONS请求,近日寻得一个简单的办法. 在路由文件中定义一个路由,通过正则来匹配相应的路由. Route::options('/{all}', function(Request $request) { $origin = $request->header('ORIGIN', '*'); header("Access-Control-Allow-Origin: $origin"); header("Access-Control-All

  • 解决Pytorch 加载训练好的模型 遇到的error问题

    这是一个非常愚蠢的错误 debug的时候要好好看error信息 提醒自己切记好好对待error!切记!切记! -----------------------分割线---------------- pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令 #保存整个网络和参数 torch.save(your_net, 'save_name.pkl') #加载保存的模型 net = torch.load('save_name.pkl') 因为我比较懒我就想直接把整个网络都保存下来,然

  • 解决pytorch DataLoader num_workers出现的问题

    最近在学pytorch,在使用数据分批训练时在导入数据是使用了 DataLoader 在参数 num_workers的设置上使程序出现运行没有任何响应的结果 ,看看代码 import torch #导入模块 import torch.utils.data as Data BATCH_SIZE=8 #每一批的数据量 x=torch.linspace(1,10,10) #定义X为 1 到 10 等距离大小的数 y=torch.linspace(10,1,10) #转换成torch能识别的Datase

  • 解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题

    背景 在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误. 原因 DataParallel包装的模型在保存时,权值参数前面会带有module字符,然而自己在单卡环境下,没有用DataParallel包装的模型权值参数不带module.本质上保存的权值文件是一个有序字典. 解决方法 1.在单卡环境下,用DataParallel包装模型. 2.自己重写Load函数,灵活.

随机推荐