Python机器学习之基于Pytorch实现猫狗分类

一、环境配置

安装Anaconda

具体安装过程,请点击本文

配置Pytorch

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision

二、数据集的准备

1.数据集的下载

kaggle网站的数据集下载地址:
https://www.kaggle.com/lizhensheng/-2000

2.数据集的分类

将下载的数据集进行解压操作,然后进行分类
分类如下(每个文件夹下包括cats和dogs文件夹)

三、猫狗分类的实例

导入相应的库

# 导入库
import torch.nn.functional as F
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel

import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets

设置超参数

# 设置超参数
#每次的个数
BATCH_SIZE = 20
#迭代次数
EPOCHS = 10
#采用cpu还是gpu进行计算
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

图像处理与图像增强

# 数据预处理

transform = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

读取数据集和导入数据

# 读取数据

dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform)

print(dataset_train.imgs)

# 对应文件夹的label

print(dataset_train.class_to_idx)

dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform)

# 对应文件夹的label

print(dataset_test.class_to_idx)

# 导入数据

train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)

定义网络模型

# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x

modellr = 1e-4

# 实例化模型并且移动到GPU

model = ConvNet().to(DEVICE)

# 选择简单暴力的Adam优化器,学习率调低

optimizer = optim.Adam(model.parameters(), lr=modellr)

调整学习率

def adjust_learning_rate(optimizer, epoch):

    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    modellrnew = modellr * (0.1 ** (epoch // 5))
    print("lr:",modellrnew)
    for param_group in optimizer.param_groups:
        param_group['lr'] = modellrnew

定义训练过程

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):

    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):

        data, target = data.to(device), target.to(device).float().unsqueeze(1)

        optimizer.zero_grad()

        output = model(data)

        # print(output)

        loss = F.binary_cross_entropy(output, target)

        loss.backward()

        optimizer.step()

        if (batch_idx + 1) % 10 == 0:

            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),

                    100. * (batch_idx + 1) / len(train_loader), loss.item()))
# 定义测试过程

def val(model, device, test_loader):

    model.eval()

    test_loss = 0

    correct = 0

    with torch.no_grad():

        for data, target in test_loader:

            data, target = data.to(device), target.to(device).float().unsqueeze(1)

            output = model(data)
            # print(output)
            test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
            pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
            correct += pred.eq(target.long()).sum().item()

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))

定义保存模型和训练

# 训练
for epoch in range(1, EPOCHS + 1):

    adjust_learning_rate(optimizer, epoch)
    train(model, DEVICE, train_loader, optimizer, epoch)
    val(model, DEVICE, test_loader)

torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')

训练结果

四、实现分类预测测试

准备预测的图片进行测试

from __future__ import print_function, division
from PIL import Image

from torchvision import transforms
import torch.nn.functional as F

import torch
import torch.nn as nn
import torch.nn.parallel
# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x
# 模型存储路径
model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth'

# ------------------------ 加载数据 --------------------------- #
# Data augmentation and normalization for training
# Just normalization for validation
# 定义预训练变换
# 数据预处理
transform_test = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

class_names = ['cat', 'dog']  # 这个顺序很重要,要和训练时候的类名顺序一致

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# ------------------------ 载入模型并且训练 --------------------------- #
model = torch.load(model_save_path)
model.eval()
# print(model)

image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg')
#
image_tensor = transform_test(image_PIL)
# 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)
image_tensor.unsqueeze_(0)
# 没有这句话会报错
image_tensor = image_tensor.to(device)

out = model(image_tensor)
pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)
print(class_names[pred])

预测结果


实际训练的过程来看,整体看准确度不高。而经过测试发现,该模型只能对于猫进行识别,对于狗则会误判。

五、参考资料

实现猫狗分类

到此这篇关于Python机器学习之基于Pytorch实现猫狗分类的文章就介绍到这了,更多相关Pytorch实现猫狗分类内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python深度学习之使用Pytorch搭建ShuffleNetv2

    一.model.py 1.1 Channel Shuffle def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size

  • python PyTorch预训练示例

    前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢.各种设计直接简洁,方便研究,比tensorflow的臃肿好多了.今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回答的总结整理. 直接加载预训练模型 如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型: my_resnet = MyResNet(*args, **kwargs) my_resnet.load_state_dict(

  • python 如何查看pytorch版本

    看代码吧~ import torch print(torch.__version__) 补充:pytorch不同版本安装以及版本查看 一:基于conda安装 conda create --name pytorch_learn python=3.6.7#创建一个名为pytorch_learn的环境 source activate pytorch_learn #进入环境 conda install pytorch=0.3.1 cuda80 -c soumith #安装pytorch0.3.1+ cu

  • 浅谈pytorch、cuda、python的版本对齐问题

    在使用深度学习模型训练的过程中,工具的准备也算是一个良好的开端吧.熟话说完事开头难,磨刀不误砍柴工,先把前期的问题搞通了,能为后期节省不少精力. 以pytorch工具为例: pytorch版本为1.0.1,自带python版本为3.6.2 服务器上GPU的CUDA_VERSION=9000 注意:由于GPU上的CUDA_VERSION为9000,所以至少要安装cuda版本>=9.0,虽然cuda=7.0~8.0也能跑,但是一开始可能会遇到各种各样的问题,本人cuda版本为10.0,安装cuda的

  • python PyTorch参数初始化和Finetune

    前言 这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是"最佳实践"吧.最后希望大家没事多逛逛论坛,有很多高质量的回答. 参数初始化 参数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在. 所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法

  • 简述python&pytorch 随机种子的实现

    随机数广泛应用在科学研究, 但是计算机无法产生真正的随机数, 一般成为伪随机数. 它的产生过程: 给定一个随机种子(一个正整数), 根据随机算法和种子产生随机序列. 给定相同的随机种子, 计算机产生的随机数列是一样的(这也许是伪随机的原因). 随机种子是什么? 随机种子是针对随机方法而言的. 随机方法:常见的随机方法有 生成随机数,以及其他的像 随机排序 之类的,后者本质上也是基于生成随机数来实现的.在深度学习中,比较常用的随机方法的应用有:网络的随机初始化,训练集的随机打乱等. 随机种子的取值

  • 基于python及pytorch中乘法的使用详解

    numpy中的乘法 A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim

  • python、PyTorch图像读取与numpy转换实例

    Tensor转为numpy np.array(Tensor) numpy转换为Tensor torch.Tensor(numpy.darray) PIL.Image.Image转换成numpy np.array(PIL.Image.Image) numpy 转换成PIL.Image.Image Image.fromarray(numpy.ndarray) 首先需要保证numpy.ndarray 转换成np.uint8型 numpy.astype(np.uint8),像素值[0,255]. 同时灰

  • Python深度学习之Pytorch初步使用

    一.Tensor Tensor(张量是一个统称,其中包括很多类型): 0阶张量:标量.常数.0-D Tensor:1阶张量:向量.1-D Tensor:2阶张量:矩阵.2-D Tensor:-- 二.Pytorch如何创建张量 2.1 创建张量 import torch t = torch.Tensor([1, 2, 3]) print(t) 2.2 tensor与ndarray的关系 两者之间可以相互转化 import torch import numpy as np t1 = np.arra

  • Python机器学习之基于Pytorch实现猫狗分类

    一.环境配置 安装Anaconda 具体安装过程,请点击本文 配置Pytorch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision 二.数据集的准备 1.数据集的下载 kaggle网站的数据集下载地址: https://www.kaggle.com/lizhensheng/-2000 2.

  • Pytorch自定义CNN网络实现猫狗分类详解过程

    目录 前言 一. 数据预处理 二. 定义网络 三. 训练模型 前言 数据集下载地址: 链接: https://pan.baidu.com/s/17aglKyKFvMvcug0xrOqJdQ?pwd=6i7m Dogs vs. Cats(猫狗大战)来源Kaggle上的一个竞赛题,任务为给定一个数据集,设计一种算法中的猫狗图片进行判别. 数据集包括25000张带标签的训练集图片,猫和狗各125000张,标签都是以cat or dog命名的.图像为RGB格式jpg图片,size不一样.截图如下: 一.

  • Python深度学习之简单实现猫狗图像分类

    一.前言 本文使用的是 kaggle 猫狗大战的数据集 训练集中有 25000 张图像,测试集中有 12500 张图像.作为简单示例,我们用不了那么多图像,随便抽取一小部分猫狗图像到一个文件夹里即可. 通过使用更大.更复杂的模型,可以获得更高的准确率,预训练模型是一个很好的选择,我们可以直接使用预训练模型来完成分类任务,因为预训练模型通常已经在大型的数据集上进行过训练,通常用于完成大型的图像分类任务. tf.keras.applications中有一些预定义好的经典卷积神经网络结构(Applic

  • python之tensorflow手把手实例讲解猫狗识别实现

    目录 一,猫狗数据集数目构成 二,数据导入 三,数据集构建 四,模型搭建 五,模型训练 六,模型测试 作为tensorflow初学的大三学生,本次课程作业的使用猫狗数据集做一个二分类模型. 一,猫狗数据集数目构成 train cats:1000 ,dogs:1000 test cats: 500,dogs:500 validation cats:500,dogs:500 二,数据导入 train_dir = 'Data/train' test_dir = 'Data/test' validati

  • 如何利用Tensorflow2进行猫狗分类识别

    目录 前言 数据集获取 文件解压 将文件分为训练集与验证集 绘图查看 模型建立 神经网络模型 模型编译 数据预处理 模型训练 运行模型 可视化中间表示 评估模型精度与损失值 总结 前言 本文参照了大佬Andrew Ng的所讲解的Tensorflow 2视频所写,本文将其中只适用于Linux的功能以及只适用于Google Colab的功能改为了普适的代码同时加入了自己的理解,尚处学习与探索阶段,能力有限,希望大家多多指正. 文章所需代码均在Jupyter Notebook当中实现. 数据集获取 使

  • Python通过TensorFlow卷积神经网络实现猫狗识别

    这份数据集来源于Kaggle,数据集有12500只猫和12500只狗.在这里简单介绍下整体思路 处理数据 设计神经网络 进行训练测试 1. 数据处理 将图片数据处理为 tf 能够识别的数据格式,并将数据设计批次. 第一步get_files() 方法读取图片,然后根据图片名,添加猫狗 label,然后再将 image和label 放到 数组中,打乱顺序返回 将第一步处理好的图片 和label 数组 转化为 tensorflow 能够识别的格式,然后将图片裁剪和补充进行标准化处理,分批次返回. 新建

  • 基于Pytorch实现的声音分类实例代码

    目录 前言 环境准备 安装libsora 安装PyAudio 安装pydub 训练分类模型 生成数据列表 训练 预测 其他 总结 前言 本章我们来介绍如何使用Pytorch训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了. 源码地址:https://github.com/yeyupiaoling/AudioClassification-Pytorch 环境准备 主要介绍libsora,PyAudio,pydub

  • 使用pytorch完成kaggle猫狗图像识别方式

    kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用. 碰巧最近入门了一门非常的深度学习框架:pytorch,所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别. 深度学习的基础就是数据,咱们先从数据谈起.此次使用的猫狗分类图像一共25000张,猫狗分别有12500张,我们先来简单的瞅瞅都是一些什么图片. 我们从下载文件里可以看到有两个文件夹:train和t

  • TensorFlow卷积神经网络之使用训练好的模型识别猫狗图片

    本文是Python通过TensorFlow卷积神经网络实现猫狗识别的姊妹篇,是加载上一篇训练好的模型,进行猫狗识别 本文逻辑: 我从网上下载了十几张猫和狗的图片,用于检验我们训练好的模型. 处理我们下载的图片 加载模型 将图片输入模型进行检验 代码如下: #coding=utf-8 import tensorflow as tf from PIL import Image import matplotlib.pyplot as plt import input_data import numpy

  • python神经网络AlexNet分类模型训练猫狗数据集

    目录 什么是AlexNet模型 训练前准备 1.数据集处理 2.创建Keras的AlexNet模型 开始训练 1.训练的主函数 2.Keras数据生成器 3.主训练函数全部代码 训练结果 最近在做实验室的工作,要用到分类模型,老板一星期催20次,我也是无语了,上有对策下有政策,在下先找个猫猫狗狗的数据集练练手,快乐极了 什么是AlexNet模型 AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的.也是在那年之后,更多的更深的神经网络

随机推荐