Java数据结构之二叉搜索树详解

目录
  • 前言
  • 性质
  • 实现
    • 节点结构
    • 初始化
    • 插入节点
    • 查找节点
    • 删除节点
  • 最后

前言

今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树。

二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数据结构进行高效率的排序与检索操作。同时因为实现也简单,作为一些公司算法题入门题目也是常有的事情,所以很需要被掌握哦~

所有源码已经放在我的github中,其中包括之前实现算法及每日一题,可以查看Data-Structures-and-Algorithms哦~

性质

二叉搜索树或者是一棵空树,或者是具有下列性质的一棵二叉树,如果当前节点具有左子树,则左子树上的每一个节点值均小于等于当前节点值,如果当前节点具有右子树,则右子树上的每一个节点值均大于等于当前节点值。依据这个性质,当我们前序遍历二叉搜索树的时候,得到的序列应该是从小到大的非递减序列。同时搜索指定值时,只需要与当前节点比较,根据相对大小在左子树或者右子树上进行搜索。

实现

根据二叉搜索树的性质我们接下来需要实现插入节点,查询节点,删除节点功能。

节点结构

public class TreeNode {
    public int val;
    public TreeNode left;
    public TreeNode right;

    public TreeNode() {
    }

    public TreeNode(int val) {
        this.val = val;
    }

    public TreeNode(int val, TreeNode left, TreeNode right) {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}

初始化

这里我们假设所有节点值大于0,初始化一个头节点。ps:对于树,链表这类数据结构,为了使第一个节点操作与其他节点保持一致,方便操作,常见的方法是添加一个额外的头节点,指向第一个节点。

TreeNode head;
    private void init() {
        //添加一个头节点
        head = new TreeNode(-1);
    }

插入节点

从头节点开始我们遍历二叉搜索树,如果当前节点值小于等于插入节点值,则插入节点在当前节点的右子树上,否则在左子树上,一直深度遍历知道当前节点的右子树(左子树)为空,则插入。

/**
     * 插入新节点,假设新节点均大于0
     * @param val 插入节点值
     * @return 插入的节点
     */
    public TreeNode insert(int val) {
        TreeNode temp = head;
        while (true) {
            if (temp.val < val) {
                //val应该在右子树上
                if (null != temp.right) {
                    temp = temp.right;
                    continue;
                } else {
                    temp.right = new TreeNode(val);
                    return temp.right;
                }
            }
            //应该在左子树上
            if (null != temp.left) {
                temp = temp.left;
                continue;
            }
            temp.left = new TreeNode(val);
            return temp.left;
        }
    }

查找节点

查找节点的步骤其实在插入节点的时候已经有体现,其实就是将查找值与当前节点比较,大于当前节点走右子树,小于当前节点走左子树,直到值匹配返回节点,或者没有找到返回null。ps:这里为了后面方便实现删除,同时返回了当前节点以及当前节点的父节点,这里使用了commons-lang3包下的Pair工具。

/**
     * 搜索节点值
     * @param val
     * @return
     */
    public Pair<TreeNode, TreeNode> find(int val) {
        TreeNode temp = head.right;
        TreeNode parent = head;
        while (null != temp) {
            if (temp.val == val) {
                return Pair.of(temp, parent);
            }
            parent = temp;
            if (temp.val < val) {
                //在右子树上
                temp = temp.right;
                continue;
            }
            temp = temp.left;
        }
        return null;
    }

删除节点

删除节点时候我们需要先找到删除节点的位置,然后做对应操作。有三种情况:

1.如果删除的是叶子节点直接删除

2.如果删除的节点只有左子树或者右子树,则直接将左子树或者右子树节点放在删除节点位置

3.如果删除节点同时有左子树和右子树,则将右子树节点放在原来节点位置,将左子树放在右子树最左边节点左子树上(反之将左子树放在原来节点位置,右子树放在左子树最右边节点右子树上也可)

/**
     * 1.如果删除的是叶子节点直接删除,
     * 2.如果删除的节点只有左子树或者右子树,则直接将左子树或者右子树节点放在删除节点位置
     * 3.如果删除节点同时右左子树和右子树,则将右子树节点放在原来节点位置,将左子树放在右子树最左边节点左子树上
     * @param val
     */
    public void delete(int val) {
        //找到删除节点,删除节点父节点
        Pair<TreeNode, TreeNode> curAndParent = this.find(val);
        TreeNode cur = curAndParent.getLeft();
        TreeNode parent = curAndParent.getRight();
        //记录删除当前节点后,当前节点位置放置哪个节点
        TreeNode changed;
        if (null == cur.left && null == cur.right) {
            changed = null;
        } else if (null != cur.left && null != cur.right) {
            TreeNode tempRight = cur.right;
            while (null != tempRight.left) {
                //找到最左侧节点
                tempRight = tempRight.left;
            }
            tempRight.left = cur.left;
            changed = cur.right;
        } else if (null != cur.left) {
            changed = cur.left;
        } else {
            changed = cur.right;
        }
        if (parent.left == cur) {
            parent.left = changed;
            return;
        }
        parent.right = changed;
    }

最后

二叉搜索树易于实现,思想简单,被广泛应用,平均查找,插入,删除时间均为O(logn),但是在删除或者插入节点的过程中,可能因为数据的特点,使得二叉搜索树极端情况下退化为一棵仅有左子树或者右子树的,这时候就跟普通顺序查找无异,时间复杂度变为O(n),因此后面出现了平衡二叉搜索树,左右子树高度相差不超过1,通过旋转将二叉树高度降低,使得查找、插入、删除在平均和最坏情况下都是O(logn)。比如常见的AVL自平衡二叉搜索树,红黑树等等。

到此这篇关于Java数据结构之二叉搜索树详解的文章就介绍到这了,更多相关Java二叉搜索树内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java基础之二叉搜索树的基本操作

    一.二叉搜索树插入元素 /** * user:ypc: * date:2021-05-18; * time: 15:09; */ class Node { int val; Node left; Node right; Node(int val) { this.val = val; } } public void insert(int key) { Node node = new Node(key); if (this.root == null) { root = node; } Node cu

  • java实现 二叉搜索树功能

    一.概念 二叉搜索树也成二叉排序树,它有这么一个特点,某个节点,若其有两个子节点,则一定满足,左子节点值一定小于该节点值,右子节点值一定大于该节点值,对于非基本类型的比较,可以实现Comparator接口,在本文中为了方便,采用了int类型数据进行操作. 要想实现一颗二叉树,肯定得从它的增加说起,只有把树构建出来了,才能使用其他操作. 二.二叉搜索树构建 谈起二叉树的增加,肯定先得构建一个表示节点的类,该节点的类,有这么几个属性,节点的值,节点的父节点.左节点.右节点这四个属性,代码如下 sta

  • 在Java中实现二叉搜索树的全过程记录

    目录 二叉搜索树 有序符号表的 API 实现二叉搜索树 二叉搜索树类 查找 插入 最小/大的键 小于等于 key 的最大键/大于等于 key 的最小键 根据排名获得键 根据键获取排名 删除 总结 二叉搜索树 二叉搜索树结合了无序链表插入便捷和有序数组二分查找快速的特点,较为高效地实现了有序符号表.下图显示了二叉搜索树的结构特点(图片来自<算法第四版>): 可以看到每个父节点下都可以连着两个子节点,键写在节点上,其中左边的子节点的键小于父节点的键,右节点的键大于父节点的键.每个父节点及其后代节点

  • Java二叉搜索树基础原理与实现方法详解

    本文实例讲述了Java二叉搜索树基础原理与实现方法.分享给大家供大家参考,具体如下: 前言:本文通过先通过了解一些二叉树基础知识,然后在转向学习二分搜索树. 1 树 1.1 树的定义 树(Tree)是n(n>=0)个节点的有限集.n=0时称为空树.在任意一颗非空树中: (1)有且仅有一个特定的称为根(Root)的节点: (2)当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1.T2........Tn,其中每一个集合本身又是一棵树,并且称为根的子树. 此外,树的定义还需要强调以

  • 利用java实现二叉搜索树

    二叉搜索树的定义 它是一颗二叉树 任一节点的左子树上的所有节点的值一定小于该节点的值 任一节点的右子树上的所有节点的值一定大于该节点的值 特点: 二叉搜索树的中序遍历结果是有序的(升序)! 实现一颗二叉搜索树 实现二叉搜索树,将实现插入,删除,查找三个方面 二叉搜索树的节点是不可以进行修改的,如果修改,则可能会导致搜索树的错误 二叉搜索树的定义类 二叉搜索树的节点类 -- class Node 二叉搜索树的属性:要找到一颗二叉搜索树只需要知道这颗树的根节点. public class BST {

  • java基础二叉搜索树图文详解

    目录 概念 直接实践 准备工作:定义一个树节点的类,和二叉搜索树的类. 搜索二叉树的查找功能 搜索二叉树的插入操作 搜索二叉树删除节点的操作-难点 性能分析 总程序-模拟实现二叉搜索树 和java类集的关系 总结 概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:1.若它的左子树不为空,则左子树上所有节点的值都小于根结点的值.2.若它的右子树不为空,则右子树上所有节点的值都大于根结点的值.3.它的左右子树也分别为二叉搜索树 直接实践 准备工作:定义一个树节点的类,和二

  • java数据结构之搜索二叉树

    本文实例为大家分享了java数据结构之搜索二叉树的具体代码,供大家参考,具体内容如下 搜索二叉树的定义是:在一个二叉树上,左节点一定比父节点小,右节点一定比父节点大,其他定义跟二叉树相同. 代码实现: public class node {     int data;     public node left, right=null;       public node(int data) {         this.data = data;       }       public node

  • Java数据结构超详细分析二叉搜索树

    目录 1.搜索树的概念 2.二叉搜索树的简单实现 2.1查找 2.2插入 2.3删除 2.4修改 3.二叉搜索树的性能 1.搜索树的概念 二叉搜索树是一种特殊的二叉树,又称二叉查找树,二叉排序树,它有几个特点: 如果左子树存在,则左子树每个结点的值均小于根结点的值. 如果右子树存在,则右子树每个结点的值均大于根结点的值. 中序遍历二叉搜索树,得到的序列是依次递增的. 二叉搜索树的左右子树均为二叉搜索树. 二叉搜索树的结点的值不能发生重复. 2.二叉搜索树的简单实现 我们来简单实现以下搜索树,就不

  • Java数据结构之二叉搜索树详解

    目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数

  • C语言实例实现二叉搜索树详解

    目录 有些算法题里有了这个概念,因为不知道这是什么蒙圈了很久. 先序遍历: root——>left——>right 中序遍历: left—— root ——>right 后序遍历 :left ——right——>root 先弄一个只有四个节点的小型二叉树,实际上这种小型二叉树应用不大. 二叉树的真正应用是二叉搜索树,处理海量的数据. 代码很简单,两种遍历的代码也差不多 #include<stdio.h> #include<stdlib.h> typedef

  • Java深入了解数据结构之二叉搜索树增 插 删 创详解

    目录 ①概念 ②操作-查找 ③操作-插入 ④操作-删除 1. cur.left == null 2. cur.right == null 3. cur.left != null && cur.right != null ⑤性能分析 ⑥完整代码 ①概念 二叉搜索树又称二叉排序树,它或者是一棵空树**,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值 它的左右子树也分别为二叉搜索树 ②操作-查找

  • C++数据结构之二叉搜索树的实现详解

    目录 前言 介绍 实现 节点的实现 二叉搜索树的查找 二叉搜索树的插入 二叉搜索树的删除 总结 前言 今天我们来学一个新的数据结构:二叉搜索树. 介绍 二叉搜索树也称作二叉排序树,它具有以下性质: 非空左子树的所有键值小于其根节点的键值 非空右子树的所有键值大于其根节点的键值 左,右子树都是二叉搜索树 那么我先画一个二叉搜索树给大家看看,是不是真的满足上面的性质. 我们就以根节点6为例子来看,我们会发现比6小的都在6的左边,而比6大的都在6的右边.对于6的左右子树来说,所有的节点都遵循这个规则.

  • Java底层基于二叉搜索树实现集合和映射/集合Set功能详解

    本文实例讲述了Java底层基于二叉搜索树实现集合和映射功能.分享给大家供大家参考,具体如下: 前言:在第5章的系列学习中,已经实现了关于二叉搜索树的相关操作,详情查看第5章即可.在本节中着重学习使用底层是我们已经封装好的二叉搜索树相关操作来实现一个基本的集合(set)这种数据结构. 集合set的特性: 集合Set存储的元素是无序的.不可重复的.为了能达到这种特性就需要寻找可以作为支撑的底层数据结构. 这里选用之前自己实现的二叉搜索树,这是由于该二叉树是不能盛放重复元素的.因此我们可以使用二叉搜索

  • Java 数据结构之时间复杂度与空间复杂度详解

    目录 算法效率 时间复杂度 什么是时间复杂度 推导大 O 阶的方法 算法情况 计算冒泡排序的时间复杂度 计算二分查找的时间复杂度 计算阶乘递归的时间复杂度 计算斐波那契递归的时间复杂度 空间复杂度 计算冒泡排序的空间复杂度 计算斐波那契数列的空间复杂度(非递归) 计算阶乘递归Factorial的时间复杂度 算法效率 在使用当中,算法效率分为两种,一是时间效率(时间复杂度),二是空间效率(空间复杂度).时间复杂度是指程序运行的速度.空间复杂度是指一个算法所需要的额外的空间. 时间复杂度 什么是时间

  • java数据结构算法稀疏数组示例详解

    目录 一.什么是稀疏数组 二.场景用法 1.二维数组转稀疏数组思路 2.稀疏数组转二维数组思路 3.代码实现 一.什么是稀疏数组 当一个数组a中大部分元素为0,或者为同一个值,那么可以用稀疏数组b来保存数组a. 首先,稀疏数组是一个数组,然后以一种特定的方式来保存上述的数组a,具体处理方法: 记录数组a一共有几行几列 记录a中有多少个不同的值 最后记录不同值的元素所在行列,以及具体的值,放在一个小规模的数组里,以缩小程序的规模. 这个小规模的数组,就是稀疏数组. 举个栗子,左侧是一个二维数组,一

  • Java数据结构之平衡二叉树的实现详解

    目录 定义 结点结构 查找算法 插入算法 LL 型 RR 型 LR 型 RL 型 插入方法 删除算法 概述 实例分析 代码 完整代码 定义 动机:二叉查找树的操作实践复杂度由树高度决定,所以希望控制树高,左右子树尽可能平衡. 平衡二叉树(AVL树):称一棵二叉查找树为高度平衡树,当且仅当或由单一外结点组成,或由两个子树形 Ta 和 Tb 组成,并且满足: |h(Ta) - h(Tb)| <= 1,其中 h(T) 表示树 T 的高度 Ta 和 Tb 都是高度平衡树 即:每个结点的左子树和右子树的高

随机推荐