OpenCV+python实现实时目标检测功能

环境安装

  1. 安装Anaconda,官网链接Anaconda
  2. 使用conda创建py3.6的虚拟环境,并激活使用
conda create -n py3.6 python=3.6 //创建
	conda activate py3.6 //激活

3.安装依赖numpy和imutils

//用镜像安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple imutils

4.安装opencv

(1)首先下载opencv(网址:opencv),在这里我选择的是opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl 。
(2)下载好后,把它放到任意盘中(这里我放的是D盘),切换到安装目录,执行安装命令:pip install opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl

代码

首先打开一个空文件命名为real_time_object_detection.py,加入以下代码,导入你所需要的包。

# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2

2.我们不需要图像参数,因为在这里我们处理的是视频流和视频——除了以下参数保持不变:
–prototxt:Caffe prototxt 文件路径。
–model:预训练模型的路径。
–confidence:过滤弱检测的最小概率阈值,默认值为 20%。

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
	help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
	help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

3.初始化类列表和颜色集,我们初始化 CLASS 标签,和相应的随机 COLORS。

# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
	"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
	"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
	"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

4.加载自己的模型,并设置自己的视频流。

# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
fps = FPS().start()

首先我们加载自己的序列化模型,并且提供对自己的 prototxt文件 和模型文件的引用
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
下一步,我们初始化视频流(来源可以是视频文件或摄像头)。首先,我们启动 VideoStreamvs = VideoStream(src=0).start(),随后等待相机启动time.sleep(2.0),最后开始每秒帧数计算fps = FPS().start()。VideoStream 和 FPS 类是 imutils 包的一部分。

5.遍历每一帧

# loop over the frames from the video stream
while True:
	# grab the frame from the threaded video stream and resize it
	# to have a maximum width of 400 pixels
	frame = vs.read()
	frame = imutils.resize(frame, width=400)

	# grab the frame from the threaded video file stream
	(h, w) = frame.shape[:2]
	blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
		0.007843, (300, 300), 127.5)

	# pass the blob through the network and obtain the detections and
	# predictions
	net.setInput(blob)
	detections = net.forward()

首先,从视频流中读取一帧frame = vs.read(),随后调整它的大小imutils.resize(frame, width=400)。由于我们随后会需要宽度和高度,接着进行抓取(h, w) = frame.shape[:2]。最后将 frame 转换为一个有 dnn 模块的 blob,cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),0.007843, (300, 300), 127.5)
现在,我们设置 blob 为神经网络的输入net.setInput(blob),通过 net 传递输入detections = net.forward()

6.这时,我们已经在输入帧中检测到了目标,现在看看置信度的值,来判断我们能否在目标周围绘制边界框和标签。

# loop over the detections
	for i in np.arange(0, detections.shape[2]):
		# extract the confidence (i.e., probability) associated with
		# the prediction
		confidence = detections[0, 0, i, 2]

		# filter out weak detections by ensuring the `confidence` is
		# greater than the minimum confidence
		if confidence > args["confidence"]:
			# extract the index of the class label from the
			# `detections`, then compute the (x, y)-coordinates of
			# the bounding box for the object
			idx = int(detections[0, 0, i, 1])
			box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
			(startX, startY, endX, endY) = box.astype("int")

			# draw the prediction on the frame
			label = "{}: {:.2f}%".format(CLASSES[idx],
				confidence * 100)
			cv2.rectangle(frame, (startX, startY), (endX, endY),
				COLORS[idx], 2)
			y = startY - 15 if startY - 15 > 15 else startY + 15
			cv2.putText(frame, label, (startX, y),
				cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

在 detections 内循环,一个图像中可以检测到多个目标。因此我们需要检查置信度。如果置信度足够高(高于阈值),那么将在终端展示预测,并以文本和彩色边界框的形式对图像作出预测。
在 detections 内循环,首先我们提取 confidence 值,confidence = detections[0, 0, i, 2]。如果 confidence 高于最低阈值(if confidence > args["confidence"]:),那么提取类标签索引(idx = int(detections[0, 0, i, 1])),并计算检测到的目标的坐标(box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]))。然后,我们提取边界框的 (x, y) 坐标((startX, startY, endX, endY) = box.astype("int")),将用于绘制矩形和文本。接着构建一个文本 label,包含 CLASS 名称和 confidence(label = "{}: {:.2f}%".format(CLASSES[idx],confidence * 100))。还要使用类颜色和之前提取的 (x, y) 坐标在物体周围绘制彩色矩形(cv2.rectangle(frame, (startX, startY), (endX, endY),COLORS[idx], 2))。如果我们希望标签出现在矩形上方,但是如果没有空间,我们将在矩形顶部稍下的位置展示标签(y = startY - 15 if startY - 15 > 15 else startY + 15)。最后,我们使用刚才计算出的 y 值将彩色文本置于帧上(cv2.putText(frame, label, (startX, y),cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2))。

7.帧捕捉循环剩余的步骤还包括:展示帧;检查 quit 键;更新 fps 计数器。

	# show the output frame
	cv2.imshow("Frame", frame)
	key = cv2.waitKey(1) & 0xFF

	# if the `q` key was pressed, break from the loop
	if key == ord("q"):
		break

	# update the FPS counter
	fps.update()

上述代码块简单明了,首先我们展示帧(cv2.imshow("Frame", frame)),然后找到特定按键(key = cv2.waitKey(1) & 0xFF),同时检查「q」键(代表「quit」)是否按下。如果已经按下,则我们退出帧捕捉循环(if key == ord("q"):break),最后更新 fps 计数器(fps.update())。

8.退出了循环(「q」键或视频流结束),我们还要处理以下。

# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

运行文件目录有以下文件:

到文件相应的目录下:cd D:\目标检测\object-detection执行命令:python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel

演示

这里我把演示视频上传到了B站,地址链接目标检测

补充

项目github地址object_detection链接。
本项目要用到MobileNetSSD_deploy.prototxt.txtMobileNetSSD_deploy.caffemodel,可以去github上下载项目运行。

到此这篇关于OpenCV+python实现实时目标检测功能的文章就介绍到这了,更多相关python实现目标检测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python Opencv任意形状目标检测并绘制框图

    opencv 进行任意形状目标识别,供大家参考,具体内容如下 工作中有一次需要在简单的图上进行目标识别,目标的形状不固定,并且存在一定程度上的噪声影响,但是噪声影响不确定.这是一个简单的事情,因为图像并不复杂,现在将代码公布如下: import cv2 def otsu_seg(img): ret_th, bin_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) return ret_th, bin_img d

  • python opencv根据颜色进行目标检测的方法示例

    颜色目标检测就是根据物体的颜色快速进行目标定位.使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标. 建立项目colordetect.py,代码如下: #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv2 def colorDetect(): image = cv2.imread('./1.png') # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值 boundaries

  • python+opencv+caffe+摄像头做目标检测的实例代码

    首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头, 因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的, 我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件, 这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分 一.检测环境 再来在开始前因为之前按着国嵌的指导手册安

  • python开启摄像头以及深度学习实现目标检测方法

    最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般.利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的).看来opencv对于摄像头的兼容性仍然不是很完善. 我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开.最后采用pygame实现了摄像头的采集功能,这里直接给大

  • OpenCV+python实现实时目标检测功能

    环境安装 安装Anaconda,官网链接Anaconda 使用conda创建py3.6的虚拟环境,并激活使用 conda create -n py3.6 python=3.6 //创建 conda activate py3.6 //激活 3.安装依赖numpy和imutils //用镜像安装 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy pip install -i https://pypi.tuna.tsinghua

  • 教你用YOLOv5实现多路摄像头实时目标检测功能

    目录 前言 一.YOLOV5的强大之处 二.YOLOV5部署多路摄像头的web应用 1.多路摄像头读取 2.模型封装 3.Flask后端处理 4.前端展示 总结 前言 YOLOV5模型从发布到现在都是炙手可热的目标检测模型,被广泛运用于各大场景之中.因此,我们不光要知道如何进行yolov5模型的训练,而且还要知道怎么进行部署应用.在本篇博客中,我将利用yolov5模型简单的实现从摄像头端到web端的部署应用demo,为读者提供一些部署思路. 一.YOLOV5的强大之处 你与目标检测高手之差一个Y

  • python利用opencv调用摄像头实现目标检测

    目录 使用到的库 实现思路 实现代码 2020/4/26更新:FPS计算 FPS记录的原理 FPS实现代码 使用到的库 好多人都想了解一下如何对摄像头进行调用,然后进行目标检测,于是我做了这个小BLOG. opencv-python==4.1.2.30 Pillow==6.2.1 numpy==1.17.4 这些都是通用的库,版本不同问题应该也不大. 实现思路 利用opencv调用摄像头,读取每一帧传入目标检测网络检测,将检测结果呈现. 由于本文所用的检测格式为RGB格式,CV2读取的时候会使用

  • 50行Python代码实现人脸检测功能

    现在的人脸识别技术已经得到了非常广泛的应用,支付领域.身份验证.美颜相机里都有它的应用.用iPhone的同学们应该对下面的功能比较熟悉 iPhone的照片中有一个"人物"的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术. 这篇文章主要介绍怎样用Python实现人脸检测.人脸检测是人脸识别的基础.人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁. 好了,介绍就到这里.接下来,开始准备我们的环境. 准备工作 本文的人

  • 如何基于OpenCV&Python实现霍夫变换圆形检测

    简述 基于python使用opencv实现在一张图片中检测出圆形,并且根据坐标和半径标记出圆.不涉及理论,只讲应用. 霍夫变换检测圆形的原理 其实检测圆形和检测直线的原理差别不大,只不过直线是在二维空间,因为y=kx+b,只有k和b两个自由度.而圆形的一般性方程表示为(x-a)²+(y-b)²=r².那么就有三个自由度圆心坐标a,b,和半径r.这就意味着需要更多的计算量,而OpenCV中提供的cvHoughCircle()函数里面可以设定半径r的取值范围,相当于有一个先验设定,在每一个r来说,在

  • C++ OpenCV实现二维码检测功能

    目录 前言 一.二维码检测 二.二维码识别 三.二维码绘制 四.源码 总结 前言 本文将使用OpenCV C++ 进行二维码检测. 一.二维码检测 首先我们要先将图像进行预处理,通过灰度.滤波.二值化等操作提取出图像轮廓.在这里我还添加了形态学操作,消除噪点,有效将矩形区域连接起来. Mat gray; cvtColor(src, gray, COLOR_BGR2GRAY); Mat blur; GaussianBlur(gray, blur, Size(3, 3), 0); Mat bin;

  • 利用ImageAI库只需几行python代码实现目标检测

    什么是目标检测 目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization) + 识别(Recognition).相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因此检测模型的输出是一个列表,列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示). 通俗的说,Object Detection的目的是在目标图中将目标用一个框框出来,并且识别出这个框中的是啥,而且最好的话是能够将图片的所

  • 基于Python实现口罩佩戴检测功能

    目录 口罩佩戴检测 一 题目背景 1.1 实验介绍 1.2 实验要求 1.3 实验环境 1.4 实验思路 二 实验内容 2.1 已知文件与数据集 2.2 图片尺寸调整 2.3 制作训练时需要用到的批量数据集 2.4 调用MTCNN 2.5 加载预训练模型MobileNet 2.6 训练模型 2.6.1 加载和保存 2.6.2 手动调整学习率 2.6.3 早停法 2.6.4 乱序训练数据 2.6.5 训练模型 三 算法描述 3.1 MTCNN 3.2 MobileNet 四 求解结果 五 比较分析

随机推荐