keras 模型参数,模型保存,中间结果输出操作

我就废话不多说了,大家还是直接看代码吧~

'''
Created on 2018-4-16
'''
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.models import Model
from keras.callbacks import ModelCheckpoint,Callback
import numpy as np
import tflearn
import tflearn.datasets.mnist as mnist

x_train, y_train, x_test, y_test = mnist.load_data(one_hot=True)
x_valid = x_test[:5000]
y_valid = y_test[:5000]
x_test = x_test[5000:]
y_test = y_test[5000:]
print(x_valid.shape)
print(x_test.shape)

model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=784))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
       optimizer='sgd',
       metrics=['accuracy'])
filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'
# filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
print(model.get_config())
# [{'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'batch_input_shape': (None, 784), 'trainable': True, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'units': 64, 'dtype': 'float32', 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'activation': 'relu', 'name': 'dense_1'}}, {'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'trainable': True, 'units': 10, 'activation': 'softmax', 'name': 'dense_2'}}]
# model.fit(x_train, y_train, epochs=1, batch_size=128, callbacks=[checkpoint],validation_data=(x_valid, y_valid))
model.fit(x_train, y_train, epochs=1,validation_data=(x_valid, y_valid),steps_per_epoch=10,validation_steps=1)
# score = model.evaluate(x_test, y_test, batch_size=128)
# print(score)
# #获取模型结构状况
# model.summary()
# _________________________________________________________________
# Layer (type)         Output Shape       Param #
# =================================================================
# dense_1 (Dense)       (None, 64)        50240(784*64+64(b))
# _________________________________________________________________
# dense_2 (Dense)       (None, 10)        650(64*10 + 10 )
# =================================================================
# #根据下标和名称返回层对象
# layer = model.get_layer(index = 0)
# 获取模型权重,设置权重model.set_weights()
weights = np.array(model.get_weights())
print(weights.shape)
# (4,)权重由4部分组成
print(weights[0].shape)
# (784, 64)dense_1 w1
print(weights[1].shape)
# (64,)dense_1 b1
print(weights[2].shape)
# (64, 10)dense_2 w2
print(weights[3].shape)
# (10,)dense_2 b2

# # 保存权重和加载权重
# model.save_weights("D:\\xxx\\weights.h5")
# model.load_weights("D:\\xxx\\weights.h5", by_name=False)#by_name=True,可以根据名字匹配和层载入权重

# 查看中间结果,必须要先声明个函数式模型
dense1_layer_model = Model(inputs=model.input,outputs=model.get_layer('dense_1').output)
out = dense1_layer_model.predict(x_test)
print(out.shape)
# (5000, 64)

# 如果是函数式模型,则可以直接输出
# import keras
# from keras.models import Model
# from keras.callbacks import ModelCheckpoint,Callback
# import numpy as np
# from keras.layers import Input,Conv2D,MaxPooling2D
# import cv2
#
# image = cv2.imread("D:\\machineTest\\falali.jpg")
# print(image.shape)
# cv2.imshow("1",image)
#
# # 第一层conv
# image = image.reshape([-1, 386, 580, 3])
# img_input = Input(shape=(386, 580, 3))
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
# x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# model = Model(inputs=img_input, outputs=x)
# out = model.predict(image)
# print(out.shape)
# out = out.reshape(193, 290,64)
# image_conv1 = out[:,:,1].reshape(193, 290)
# image_conv2 = out[:,:,20].reshape(193, 290)
# image_conv3 = out[:,:,40].reshape(193, 290)
# image_conv4 = out[:,:,60].reshape(193, 290)
# cv2.imshow("conv1",image_conv1)
# cv2.imshow("conv2",image_conv2)
# cv2.imshow("conv3",image_conv3)
# cv2.imshow("conv4",image_conv4)
# cv2.waitKey(0)

中间结果输出可以查看conv过之后的图像:

原始图像:

经过一层conv以后,输出其中4张图片:

以上这篇keras 模型参数,模型保存,中间结果输出操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras 如何保存最佳的训练模型

    1.只保存最佳的训练模型 2.保存有所有有提升的模型 3.加载模型 4.参数说明 只保存最佳的训练模型 from keras.callbacks import ModelCheckpoint filepath='weights.best.hdf5' # 有一次提升, 则覆盖一次. checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1,save_best_only=True,mode='max',period=2)

  • 基于keras输出中间层结果的2种实现方式

    1.使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要的那一层的输出,然后重新进行predict. #coding=utf-8 import seaborn as sbn import pylab as plt import theano from keras.models import Sequential from keras.layers import Dense,Activation from keras.models import Model mod

  • keras读取训练好的模型参数并把参数赋值给其它模型详解

    介绍 本博文中的代码,实现的是加载训练好的模型model_halcon_resenet.h5,并把该模型的参数赋值给两个不同的新的model. 函数式模型 官网上给出的调用一个训练好模型,并输出任意层的feature. model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output) 但是这有一个问题,就是新的model,如果输入inputs和训练好的model的inputs大小不

  • keras 模型参数,模型保存,中间结果输出操作

    我就废话不多说了,大家还是直接看代码吧~ ''' Created on 2018-4-16 ''' import keras from keras.models import Sequential from keras.layers import Dense from keras.models import Model from keras.callbacks import ModelCheckpoint,Callback import numpy as np import tflearn im

  • Pytorch模型参数的保存和加载

    目录 一.前言 二.参数保存 三.参数的加载 四.保存和加载整个模型 五.总结 一.前言 在模型训练完成后,我们需要保存模型参数值用于后续的测试过程.由于保存整个模型将耗费大量的存储,故推荐的做法是只保存参数,使用时只需在建好模型的基础上加载. 通常来说,保存的对象包括网络参数值.优化器参数值.epoch值等.本文将简单介绍保存和加载模型参数的方法,同时也给出保存整个模型的方法供大家参考. 二.参数保存 在这里我们使用 torch.save() 函数保存模型参数: import torch pa

  • 解决tensorflow模型参数保存和加载的问题

    终于找到bug原因!记一下:还是不熟悉平台的原因造成的! Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接在同一个文件又训练又重新加载模型预测不出错,而且更诡异的是此时用分文件里的对象加载模型不会出错? model.py,里面含有 ModelV 和 ModelP,另外还有 modelP.py 和 modelV.py 分别只含有 ModelP 和 ModeV 这两个对象,先使用 modelP.py 和 m

  • 将keras的h5模型转换为tensorflow的pb模型操作

    背景:目前keras框架使用简单,很容易上手,深得广大算法工程师的喜爱,但是当部署到客户端时,可能会出现各种各样的bug,甚至不支持使用keras,本文来解决的是将keras的h5模型转换为客户端常用的tensorflow的pb模型并使用tensorflow加载pb模型. h5_to_pb.py from keras.models import load_model import tensorflow as tf import os import os.path as osp from kera

  • TensorFlow Saver:保存和读取模型参数.ckpt实例

    在使用TensorFlow的过程中,保存模型参数变量是很重要的一个环节,既可以保证训练过程信息不丢失,也可以帮助我们在需要快速恢复或使用一个模型的时候,利用之前保存好的参数之间导入,可以节省大量的训练时间.本文通过最简单的例程教大家如何保存和读取.ckpt文件. 一.保存到文件 首先是导入必要的东西: import tensorflow as tf import numpy as np 随便写几个变量: # Save to file # remember to define the same d

  • 浅谈keras.callbacks设置模型保存策略

    如下所示: keras.callbacks.ModelCheckpoint(self.checkpoint_path, verbose=0, save_weights_only=True,mode="max",save_best_only=True), 默认是每一次poch,但是这样硬盘空间很快就会被耗光. 将save_best_only 设置为True使其只保存最好的模型,值得一提的是其记录的acc是来自于一个monitor_op,其默认为"val_loss",其

  • 基于pytorch的保存和加载模型参数的方法

    当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了. 保存和加载模型参数有两种方式: 方式一: torch.save(net.state_dict(),path): 功能:保存训练完的网络的各层参数(即weights和bias) 其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth) net2.load_state_dict(torch.loa

  • PyTorch和Keras计算模型参数的例子

    Pytorch中,变量参数,用numel得到参数数目,累加 def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) return {'Total': total_num, 'Trainable': trainable_num} Kera

  • Keras模型转成tensorflow的.pb操作

    Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署.直接上代码 from keras.models import Model from keras.layers import Dense, Dropout from keras.applications.mobilenet import MobileNet from keras.applications.mobilenet import preprocess_input from keras.preprocessi

随机推荐