Keras框架中的epoch、bacth、batch size、iteration使用介绍

1、epoch

Keras官方文档中给出的解释是:“简单说,epochs指的就是训练过程接中数据将被“轮”多少次”

(1)释义:

训练过程中当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个epoch,网络会在每个epoch结束时报告关于模型学习进度的调试信息。

(2)为什么要训练多个epoch,即数据要被“轮”多次

在神经网络中传递完整的数据集一次是不够的,对于有限的数据集(是在批梯度下降情况下),使用一个迭代过程,更新权重一次或者说使用一个epoch是不够的,需要将完整的数据集在同样的神经网络中传递多次,随着epoch次数增加,神经网络中的权重的更新次数也增加,模型从欠拟合变得过拟合。

2、batch

(1)keras官方文档中给出的解释:

深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式:

第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这种称为Batch gradient descent,批梯度下降

另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点,两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。

为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。

(2)batch_size:

Keras中参数更新是按批进行的,就是小批梯度下降算法,把数据分为若干组,称为batch,按批更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,一批数据中包含的样本数量称为batch_size。

3、iteration

将数据分为几个batch而不是一次性通过神经网络时,iteration是batch需要完成一个epoch的次数,也就是number of batches (区别于 batch size) , 在一次epoch中 number of batches = iteration = 训练样本总数 / batch size

比如,对于一个有2000个训练样本的数据集,将2000个样本分成大小为500的batch,那么完成一个epoch需要4个iteration

4、batch size 和 epoch 的选取

(1)训练网络过程中,一个batch中的样本规模大小,即batch size 和epoch个数一起通过影响更新权重的频率定义了网络学习数据的速度。

对于固定的epoch:

(a)在合理范围内,随着batch size增大,跑完一次epoch所需的迭代数减少,对于相同数据量的处理速度进一步加快,确定的下降方向越准,引起的训练震荡越小。

(b)batch size 过大时,跑完一次epoch所需的迭代数减少,想要达到相同的精度,所花费的时间大大增加了,从而对参数的修正也变得缓慢,batch size增大到一定程度,其确定的下降方向已经基本不再变化

对于固定的batch size:

(a)在合理范围内随着epoch的增加,训练集和测试集的误差呈下降趋势,模型的训练有了效果

(b)随着epoch的继续增加,训练集的误差呈下降而测试集的误差呈上升趋势,模型过拟合训练集对测试集性能不好

(2)实验实验,通过实验+经验选取合适的batch size 和 epoch

补充知识:keras指定batchsize

具体的测试可以将keras中的第6.4程序

1、Sequential情况下

如果想要指定批次的大小,需要在第一层的输入形状中使用batch_input_shape

而不能使用input_shape,因为input_shape不能指定批次的大小,批次只能为None

input_shape和batch_input_shape。

input_shape 不包含批量大小,

batch_input_shape是全情投入的形状,包括批量大小。

2、函数式情况下

Input参数

shape: 一个尺寸元组(整数),不包含批量大小。A shape tuple (integer), not including the batch size. 例如,shape=(32,) 表明期望的输入是按批次的 32 维向量。

batch_shape: 一个尺寸元组(整数),包含批量大小。 例如,batch_shape=(10, 32) 表明期望的输入是 10 个 32 维向量。

batch_shape=(None, 32) 表明任意批次大小的 32 维向量。

以上这篇Keras框架中的epoch、bacth、batch size、iteration使用介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 关于keras.layers.Conv1D的kernel_size参数使用介绍

    今天在用keras添加卷积层的时候,发现了kernel_size这个参数不知怎么理解,keras中文文档是这样描述的: kernel_size: 一个整数,或者单个整数表示的元组或列表, 指明 1D 卷积窗口的长度. 又经过多方查找,大体理解如下: 因为是添加一维卷积层Conv1D(),一维卷积一般会处理时序数据,所以,卷积核的宽度为1,而kernel_size就是卷积核的长度了,这样的意思就是这个卷积核是一个长方形的卷积核. 补充知识:tf.layers.conv1d函数解析(一维卷积) 一维

  • keras中的卷积层&池化层的用法

    卷积层 创建卷积层 首先导入keras中的模块 from keras.layers import Conv2D 卷积层的格式及参数: Conv2D(filters, kernel_size, strides, padding, activation='relu', input_shape) filters: 过滤器数量 kernel_size:指定卷积窗口的高和宽的数字 strides: 卷积stride,如果不指定任何值,则strides设为1 padding: 选项包括'valid'和'sa

  • 浅谈tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意点

    batch很好理解,就是batch size.注意在一个epoch中最后一个batch大小可能小于等于batch size dataset.repeat就是俗称epoch,但在tf中与dataset.shuffle的使用顺序可能会导致个epoch的混合 dataset.shuffle就是说维持一个buffer size 大小的 shuffle buffer,图中所需的每个样本从shuffle buffer中获取,取得一个样本后,就从源数据集中加入一个样本到shuffle buffer中. imp

  • Keras框架中的epoch、bacth、batch size、iteration使用介绍

    1.epoch Keras官方文档中给出的解释是:"简单说,epochs指的就是训练过程接中数据将被"轮"多少次" (1)释义: 训练过程中当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个epoch,网络会在每个epoch结束时报告关于模型学习进度的调试信息. (2)为什么要训练多个epoch,即数据要被"轮"多次 在神经网络中传递完整的数据集一次是不够的,对于有限的数据集(是在批梯度下降情况下),使用一个迭代过程,更新权重一

  • tensorflow可视化Keras框架中Tensorboard使用示例

    目录 Tensorboard详解 使用例子 1.loss和acc 2.权值直方图 3.梯度直方图 实现代码 Tensorboard详解 该类在存放在keras.callbacks模块中.拥有许多参数,主要的参数如下: 1.log_dir: 用来保存Tensorboard的日志文件等内容的位置 2.histogram_freq: 对于模型中各个层计算激活值和模型权重直方图的频率. 3.write_graph: 是否在 TensorBoard 中可视化图像. 4.write_grads: 是否在 T

  • django drf框架中的user验证以及JWT拓展的介绍

    登录注册是几乎所有网站都需要去做的接口,而说到登录,自然也就涉及到验证以及用户登录状态保存,最近用DRF在做的一个关于网上商城的项目中,引入了一个拓展DRF JWT,专门用于做验证和用户状态保存.这个拓展比传统的CSRF更加安全.先来介绍一下JWT认证机制吧! Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准( (RFC 7519).该token被设计为紧凑且安全的,特别适用于分布式站点的单点登录(SSO)场景.JWT的声明一般被用来在

  • SpringBoot框架中Mybatis-plus的简单使用操作汇总

    Mybatis-plus 官网地址:https://baomidou.com/ 配置mysql 在配置文件连接mysql spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver spring.datasource.url=jdbc:mysql://localhost:3306/cat_house?serverTimezone=GMT%2B8 spring.datasource.username=username spring.da

  • 设计模式在Spring框架中的应用汇总

    这篇文章主要介绍了设计模式在Spring框架中的应用汇总,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在开始正文之前,请你先思考几个问题: 你项目中有使用哪些 GOF 设计模式 说一说 GOF 23 种设计模式的设计理念 说说 Spring 框架中如何实现设计模式 假设我是面试官问起了你这些面试题,你该如何回答呢,请先思考一分钟. 好的,我们开始进入正题.设计模式实践里面提供了许多经久不衰的解决方案和最佳方案.这里,GOF 设计模式主要分为三

  • ABP框架中的事件总线功能介绍

    目录 事件总线 关于事件总线 为什么需要这个东西 事件总线创建过程 订阅事件 事件 发布事件 全局异常加入事件总线功能 创建事件 订阅事件 发布事件 测试 记录事件 事件总线 关于事件总线 ABP 中,为了方便进程间通讯,给开发者提供了一个叫 事件总线 的功能,事件总线分为 本地事件总线.分布式事件总线,本篇文章讲的是 本地事件总线,系列教程中暂时不考虑讲解 分布式事件总线. 事件总线 需要使用 Volo.Abp.EventBus 库,ABP 包中自带,不需要额外引入. 事件总线是通过 订阅-发

  • C#在MEF框架中手动导入依赖模块

    对于简单的场景来讲,在MEF中导入依赖模块非常简单,只要用ImportAttribute标记依赖的成员,MEF模块会自动找到并创建该模块.但有的时候我们依赖的模块是上下文相关的,此时MEF框架的自动组装满足不了我们的需求了,这里以我之前的文章的一个Log插件为例: class HostModule { [Import] ILogger logger = null; public string Name { get; private set; } public HostModule(string

  • Spring框架中@PostConstruct注解详解

    目录 初始化方式一:@PostConstruct注解 初始化方式二:实现InitializingBean接口 补充:@PostConstruct注释规则 总结 初始化方式一:@PostConstruct注解 假设类UserController有个成员变量UserService被@Autowired修饰,那么UserService的注入是在UserController的构造方法之后执行的. 如果想在UserController对象生成时候完成某些初始化操作,而偏偏这些初始化操作又依赖于依赖注入的对

  • Spring Boot框架中的@Conditional注解示例详解

    目录 1. @Conditional 注解 2. Spring boot 扩展 1) @ConditionalOnClass和@ConditionalOnMissingClass注解 2) @ConditionalOnBean 和@ConditionalOnMissingBean注解 3) @ConditionalOnProperty注解 1. @Conditional 注解 @Conditional注解是Spring-context模块提供了一个注解,该注解的作用是可以根据一定的条件来使@Co

  • 使用keras框架cnn+ctc_loss识别不定长字符图片操作

    我就废话不多说了,大家还是直接看代码吧~ # -*- coding: utf-8 -*- #keras==2.0.5 #tensorflow==1.1.0 import os,sys,string import sys import logging import multiprocessing import time import json import cv2 import numpy as np from sklearn.model_selection import train_test_s

随机推荐