R语言通过parallel包实现多线程运行方式

总的来说,R的运算速度不算快,不过类似并行运算之类的改进可以提高运算的性能。下面非常简要地介绍如何利用R语言进行并行运算

library(parallel)
cl.cores <- detectCores()
cl <- makeCluster(cl.cores)

detectCores( )检查当前电脑可用核数。

makeCluster(cl.cores)使用刚才检测的核并行运算。R-Doc里这样描述makeCluster函数:Creates a set of copies of R running in parallel and communicating over sockets. 即同时创建数个R进行并行运算。

在该函数执行后就已经开始并行运算了,电脑可能会变卡一点。尤其在执行par开头的函数时。

在并行运算环境下,常用的一些计算方法如下:

1. clusterEvalQ(cl,expr)函数利用创建的cl执行expr

这里利用刚才创建的cl核并行运算expr。expr是执行命令的语句,不过如果命令太长的话,一般写到文件里比较好。比如把想执行的命令放在Rcode.r里:

clusterEvalQ(cl,source(file="Rcode.r"))

2.par开头的apply函数族

这族函数和apply的用法基本一样,不过要多加一个参数cl。一般如果cl创建如上面cl <- makeCluster(cl.cores)的话,这个参数可以直接用作parApply(cl=cl,…)。

当然Apply也可以是Sapply,Lapply等等。注意par后面的第一个字母是要大写的,而一般的apply函数族第一个字母不大写。另外要注意,即使构建了并行运算的核,不使用parApply()函数,而使用apply()函数的话,则仍然没有实现并行运算。

换句话说,makeCluster只是创建了待用的核,而不是并行运算的环境。

最后,终止并行运算只需要一行命令

stopCluster(cl)

案例1

不使用并行计算,直接使用lapply(隐式循环函数,它实际就是对不同的数据应用了相同的函数):

fun <- function(x){
return (x+1);
}
system.time({
res <- lapply(1:5000000, fun);
});
user  system elapsed
21.42    1.74   25.70

案例2

使用parallel包来加速

library(parallel)
#打开四核,具体核数根据机器的核数决定
cl <- makeCluster(getOption("cl.cores", 4));
system.time({
res <- parLapply(cl, 1:5000000,  fun)
});
user system elapsed
6.54 0.34 19.95
#关闭并行计算
stopCluster(cl);

看看单核机器跑出来的结果:

user  system elapsed
29.30    9.23   97.22

所以,并非核数越多越好,看机器配置。

这个函数有两点要注意:

首先要先用detectCores函数确定系统核心数目,对于Window系统下的Intel I5或I7 处理器,一般使用detectCores(logical = F)来获得实际的物理核心数量。

由于这个函数使用的是调用Rscript的方式,这个例子里,对象被复制了三份,因此内存会吃的很厉害,在大数据条件就要小心使用。

案例3

在Linux下使用mclapply函数的效果如下:

mc <- getOption("mc.cores", 3)
system.time({
res <- mclapply(1:5000000, fun, mc.cores = mc);
});
user system elapsed
6.657 0.500 7.181
 stopCluster(cl);

补充:R语言如何并行处理[parallel package][向量化操作并行优化]

使用数据,长下面这样:

方法:

使用parallel包,并行向量化处理,进一步提升原先向量化处理速度。

原始代码:

start <- Sys.time()
experiment_step1 <- apply(dtc_small_modify, 1, decompose)
end <- Sys.time()
print(end-start)

原始运行时间:3.083114 分

使用parallel包后

library(parallel) #并行处理包
cl.cores <- detectCores(logical = F) #计算电脑核心数
cl <- makeCluster(cl.cores) # 初始化要使用的核心数
start <- Sys.time()
results <- parApply(cl=cl, dtc_small_modify, 1, decompose) # apply的并行版本
stopCluster(cl) # 关闭并行模式
end <- Sys.time()
print(end-start)

并行后

运行时间:55.5877 秒,相较原先,速度提升了将近四倍!

Tips:上述是对向量化(Vectorization)apply类的并行处理。对于apply的并行处理,必须使用par开头的对应apply.

列表如下:

parLapply(cl = NULL, X, fun, …, chunk.size = NULL)
parSapply(cl = NULL, X, FUN, …, simplify = TRUE, USE.NAMES = TRUE, chunk.size = NULL)
parApply(cl = NULL, X, MARGIN, FUN, …, chunk.size = NULL)
parRapply(cl = NULL, x, FUN, …, chunk.size = NULL)
parCapply(cl = NULL, x, FUN, …, chunk.size = NULL)
parLapplyLB(cl = NULL, X, fun, …, chunk.size = NULL)
parSapplyLB(cl = NULL, X, FUN, …, simplify = TRUE, USE.NAMES = TRUE, chunk.size = NULL)

使用apply类向量化操作后,常常产生大规模列表,可能需要将列表转成一个完整的大数据框。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • R语言向量下标操作

    向量下标即元素在向量中的位置,在实践中我们可以利用下标(元素的位置)来找出自己想要的数. 利用runif函数生成包含10个正整数的向量x. options(digits = 1) set.seed(1234) x <- runif(10,min = 1,max = 20) x [1] 3 13 13 13 17 13 1 5 14 11 正整数下标 我们可以输入正整数作为下标来找出对应位置的元素. 在[]内输入下标. #向量x的第一位置的元素 x[1] [1] 3 #向量x的第2位置的元素 x[

  • R语言中cut()函数的用法说明

    R语言cut()函数使用 cut()切割将x的范围划分为时间间隔,并根据其所处的时间间隔对x中的值进行编码. 参数:breaks:两个或更多个唯一切割点或单个数字(大于或等于2)的数字向量,给出x被切割的间隔的个数. breaks采用fivenum():返回五个数据:最小值.下四分位数.中位数.上四分位数.最大值. labels为区间数,打标签 ordered_result 逻辑结果应该是一个有序的因素吗? 先用fivenum求出5个数,再用labels为每两个数之间,贴标签,采用(]的区间,

  • 在R语言中实现Logistic逻辑回归的操作

    逻辑回归是拟合回归曲线的方法,当y是分类变量时,y = f(x).典型的使用这种模式被预测Ÿ给定一组预测的X.预测因子可以是连续的,分类的或两者的混合. R中的逻辑回归实现 R可以很容易地拟合逻辑回归模型.要调用的函数是glm(),拟合过程与线性回归中使用的过程没有太大差别.在这篇文章中,我将拟合一个二元逻辑回归模型并解释每一步. 数据集 我们将研究泰坦尼克号数据集.这个数据集有不同版本可以在线免费获得,但我建议使用Kaggle提供的数据集. 目标是预测生存(如果乘客幸存,则为1,否则为0)基于

  • 基于R语言赋值符号的区别说明

    R语言赋值可以用=或<-,一般都建议使用<-,那你知道这两个之间的区间吗?那你有没有见过'<-'和'='这种赋值方法吗?今天就来和大家聊聊这基本的赋值符号都有哪些区别. 首先我们来看看符号的优先级,和java,c这些编程语言的优先级类似.下面这些都取自R帮助文档,输入?Syntax即可查看,它是根据优先级从高到低排列的. :: ::: access variables in a namespace $ @ component / slot extraction [ [[ indexing

  • R语言中c()函数与paste()函数的区别说明

    c()函数:将括号中的元素连接起来,并不创建向量 paste()函数:连接括号中的元素 例如 c(1, 2:4),结果为1 2 3 4 paste(1, 2:4),结果为"1 2" "1 3" "1 4" c(2, "and"),结果为"2" "and" paste(2, "and"),结果为"2 and" 补充:R语言中paste函数的参数sep

  • R语言-summary()函数的用法解读

    summary():获取描述性统计量,可以提供最小值.最大值.四分位数和数值型变量的均值,以及因子向量和逻辑型向量的频数统计等. 结果解读如下: 1. 调用:Call lm(formula = DstValue ~ Month + RecentVal1 + RecentVal4 + RecentVal6 + RecentVal8 + RecentVal12, data = trainData) 当创建模型时,以上代码表明lm是如何被调用的. 2. 残差统计量:Residuals Min 1Q M

  • R语言-有负下标里才能有零介绍

    1.只有负下标里才能有零 先看一个例子 >a<-c(1,2,3,4) >a[-1:1] > a[-1:1] Error in a[-1:1] : 只有负下标里才能有零 (1)只有负下标里才能有零,在这里的意思为: a[-1:0] 可行 a[0:4]也可行 a[-1:1]不可行 也就是说要么是负索引到0,或者0到正索引,但不能同时出现正负索引. (2)a[0]结果为numberic(0),结果没有意义,如 > a[0]+10.9 numeric(0) > a[1]+10.

  • R语言多线程运算操作(解决R循环慢的问题)

    已经大半年没有更新博客了..最近都跑去写分析报告半年没有R 这次记录下关于R循环(百万级以上)死慢死慢的问题,这个问题去年就碰到过,当时也尝试过多线程,but failed......昨天试了下,终于跑通了,而且过程还挺顺利 step1 先查下自己电脑几核的,n核貌似应该选跑n个线程,线程不是越多越好,线程个数和任务运行时间是条开口向下的抛物线,最高点预计在电脑的核数上. detectCores( )检查当前电脑可用核数 我的是4所以step2选的是4 library(parallel) cl.

  • R语言通过parallel包实现多线程运行方式

    总的来说,R的运算速度不算快,不过类似并行运算之类的改进可以提高运算的性能.下面非常简要地介绍如何利用R语言进行并行运算 library(parallel) cl.cores <- detectCores() cl <- makeCluster(cl.cores) detectCores( )检查当前电脑可用核数. makeCluster(cl.cores)使用刚才检测的核并行运算.R-Doc里这样描述makeCluster函数:Creates a set of copies of R run

  • 如何改变R语言默认存储包的路径

    怎么更改R中包的存储路径呢? 方法一 可以在R里面用如下命令 .libPaths("C:/Program Files/R/R-3.3.1/library") 方法二 在安装某一个包得时候用如下命令 install.packages("thepackage",lib="/path/to/directory/with/libraries") 补充:如何永久改变R中 .libPaths()?R语言修改 libPath包的储存路径 写在前面 我们有时候新

  • R语言利用caret包比较ROC曲线的操作

    说明 我们之前探讨了多种算法,每种算法都有优缺点,因而当我们针对具体问题去判断选择那种算法时,必须对不同的预测模型进行重做评估. 为了简化这个过程,我们使用caret包来生成并比较不同的模型与性能. 操作 加载对应的包与将训练控制算法设置为10折交叉验证,重复次数为3: library(ROCR) library(e1071) library("pROC") library(caret) library("pROC") control = trainControl(

  • 详解R语言图像处理EBImage包

    目录 什么是EBImage 1. 图像读取与保存 2.色彩管理 3.图像处理 4.空间变换 5.形态运算 6.图像分割 本文摘自<Keras深度学习:入门.实战及进阶>第四章部分章节. 什么是EBImage EBImage是R的一个扩展包,提供了用于读取.写入.处理和分析图像的通用功能,非常容易上手.EBImage包在Bioconductor中,通过以下命令进行安装. install.packages("BiocManager") BiocManager::install(

  • R语言ggplot2拼图包patchwork安装使用

    目录 引言 安装 例子 高级特性 引言 patchwork是基于ggplot2的拼图包,因为ggplot2本身没有强大的拼图语法,而一般使用的gridExtra与cowplot的拼ggplot2图形都存在不少问题. 我关注这个包蛮久了,现在Github上的Star数已经远超大部分的R包,但似乎还没有发布到CRAN.我的工作看似跟作图相关,写的博文大多数也如此,但实际对图形的掌控力并不咋的,所以还是要多多学习. 下面进入正题,掌握好ggplot2与patchwork的基本用法,一般的图形都可以搞定

  • R语言学习VennDiagram包绘制韦恩图示例

    目录 引言 一 需要安装和导入的包 二 使用函数及参数 三 知道各个数据集的个数以及重叠(交叉)的个数 2.1 两个已知数据集的韦恩图 2.2 三个已知数据集的韦恩图 四 根据数据集合绘制韦恩图 4.1 四个数据集合 4.2 五个数据集合 引言 本版块会持续分享一些常用的结果展示的图形. 在得到数据之后,我们经常会用到维恩图来展示各个数据集之间的重叠关系.本文简单的介绍R语言中的VennDiagram包绘制数据集的维恩图. 一 需要安装和导入的包 install.packages("VennDi

  • R语言使用cgdsr包获取TCGA数据示例详解

    目录 TCGA数据源 TCGA数据库探索工具 查看任意数据集的样本列表方式 选定数据形式及样本列表后获取感兴趣基因的信息,下载mRNA数据 选定样本列表获取临床信息 综合性获取 下载mRNA数据 获取病例列表的临床数据 从cBioPortal下载点突变信息 从cBioPortal下载拷贝数变异数据 把拷贝数及点突变信息结合画热图 TCGA数据源 众所周知,TCGA数据库是目前最综合全面的癌症病人相关组学数据库,包括的测序数据有: DNA Sequencing miRNA Sequencing P

  • R语言数据可视化包ggplot2画图之散点图的基本画法

    目录 前言 下面以一个简单的例子引入: 首先介绍第一类常用的图像类型:散点图 给原始数据加上分类标签: 按z列分类以不同的颜色在图中画出散点图: 按z列分类以不同的形状在图中画出散点图: 多面化(将ABC三类分开展示): 自定义颜色: 添加拟合曲线: 更换主题 : 总结 前言 ggplot2的功能很强大,并因为其出色的画图能力而闻名,下面来介绍一下它的基本画图功能,本期介绍散点图的基本画法. 在ggplot2里,所有图片由6个基本要素组成: 1. 数据(Data) 2. 层次(Layers),包

  • R语言之xlsx包读写Excel数据的操作

    感谢Adrian A. Drǎgulescu发布的xlsx包 xlsx包提供了必要的工具来与Excel 2007进行交互.用户可以阅读和编写xlsx,并可以通过设置数据格式.字体.颜色和边框来控制电子表格的外观.设置打印区域,缩放控制,创建分割和冻结面板,添加页眉和页脚.包使用Apache POI项目中的java库.本篇主要分享利用xlsx工具包在读写xlsx过程中所碰到的问题及解决办法. 工具准备 强烈建议大家使用RStudio这个IDE,它是以今为止对R语言最友好的一个IDE之一,而且使用很

  • R语言绘制空间热力图实例讲解

    先上图 R语言的REmap包拥有非常强大的空间热力图以及空间迁移图功能,里面内置了国内外诸多城市坐标数据,使用起来方便快捷. 开始首先安装相关包 install_packages("devtools") install_packages("REmap") library(devtools) library(REmap) 我们来试试其强大的城市坐标获取功能 city<- c("beijing","上海") get_geo_

随机推荐