详解Python修复遥感影像条带的两种方式

GDAL修复Landsat ETM+影像条带

Landsat7 ETM+卫星影像由于卫星传感器故障,导致此后获取的影像出现了条带。如下图所示, 影像中均匀的布满条带。

使用GDAL修复影像条带的代码如下:

def gdal_repair(tif_name, out_name, bands):
  """
    tif_name(string): 源影像名
    out_name(string): 输出影像名
    bands(integer): 影像波段数
  """
  # 打开影像文件
  tif = gdal.Open(tif_name)

  # 根据文件类型获取对应的驱动程序
  driver = gdal.GetDriverByName('GTiff')

  # 根据指定文件的驱动程序,使用现有数据集创建新的可写数据集
  # 所有支持创建新文件的驱动程序都支持该`CreateCopy()`方法,   # 但仅`Create()`部分支持该方法
  # CreateCopy的第一个参数为目标文件名,第二个参数为源数据集
  # 第三个参数的值是`0`或`1`,值是`0`。即使无法将原始数据准确地转换为目标数据,程序仍将执行
  new_img = driver.CreateCopy(out_name, tif, 0)

  for i in tqdm(range(1, bands)):
    # 分别对每个波段处理
    band = new_img.GetRasterBand(i)

    # 使用FillNodata对条带部分进行插值
    gdal.FillNodata(targetBand = band, maskBand = band, maxSearchDist = 15, smoothingIterations=0)

    # 将修复好的波段写入新数据集中
    new_img.GetRasterBand(i).WriteArray(band.ReadAsArray())

修复之后的效果图如下所示:

Opencv修复Landsat ETM+影像条带

使用opencv修复影像的代码如下:

def cv2_repair(tif_name):
  # 读取tif影像
  tif_data = gdal_array.LoadFile(tif_name).astype('float32')

  # 获取掩膜
  mask = tif_data.sum(axis=0)
  mask = (mask == 0).astype(np.uint8)

  bands = tif_data.shape[0]

  res = []
  for i in tqdm(range(bands)):
    # cv.Inpaint(src, inpaintMask, dst, inpaintRadius, flags)
    # src:源图像,可以是8位、16位无符号整型和32位浮点型1通道或者8位无符号3通道
    # inpaintMask:掩膜,8位无符号整型
    # dst:和源图像具有一样大小的输出
    # inpaintRadius:算法考虑的每个已修复点的圆形邻域的半径     # flags:修复算法类型,可选cv2.INPAINT_NS和cv2.INPAINT_TELEA

    repaired = cv2.inpaint(tif_data[i], mask, 3, flags=cv2.INPAINT_TELEA)
    res.append(repaired)

  return np.array(res)

修复之后的结果图:

使用opencv修复影像,速度要比Gdal慢许多,但修复质量更好。

Reference

https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_reconstruction_Inpainting_Interpolation.php

https://gis.stackexchange.com/questions/151020/how-to-use-gdal-fillnodata-in-python

到此这篇关于详解Python修复遥感影像条带的两种方式的文章就介绍到这了,更多相关Python修复遥感影像条带内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python图像处理之反色实现方法

    本文实例讲述了python图像处理之反色实现方法.分享给大家供大家参考.具体如下: 我们先加载一个8位灰度图像 每一个像素对应的灰度值从0-255 则只需要读取每个像素的灰度值A,再将255-A写入 这样操作一遍后,图像就会反色了 这里运行环境为: Python为:Python2.7.6 OpenCV2.4.10版(可到http://sourceforge.net/projects/opencvlibrary/files/opencv-win/下载) numpy为:numpy-1.9.1-win

  • python使用TensorFlow进行图像处理的方法

    一.图片的放大缩小 在使用TensorFlow进行图片的放大缩小时,有三种方式: 1.tf.image.resize_nearest_neighbor():临界点插值 2.tf.image.resize_bilinear():双线性插值 3.tf.image.resize_bicubic():双立方插值算法 下面是示例代码: # encoding:utf-8 # 使用TensorFlow进行图片的放缩 import tensorflow as tf import cv2 import numpy

  • python图像处理入门(一)

    一.环境 由于这学期开了图像处理这门课,所以想着在各种实验开始之前自己先动手试一下 图像处理那首先要配个环境嘛,配环境真的是我长久以来的噩梦了,每次都会出现奇奇怪怪的问题,首先上网查找了一下,opencv这个库还是用的比较多的,如果想要使用C++来做图像处理的话,那么使用visual studio搭配opencv是比较常见的,所以就照着网上的教程下载好了vs之后下载了opencv的包,将包导入指定的路径也设置好环境变量之后发现还是不行,怎么办呢?这个时候想到那还不如自己直接用python,一来现

  • python数字图像处理之骨架提取与分水岭算法

    骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s

  • Python Image模块基本图像处理操作小结

    本文实例讲述了Python Image模块基本图像处理操作.分享给大家供大家参考,具体如下: Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记. 1. 首先需要导入需要的图像库: import Image 2. 读取一张图片: im=Image.open('/home/Picture/test.jpg') 3. 显示一张图片: im.show() 4. 保存图片: im.save("sa

  • Python数字图像处理之霍夫线变换实现详解

    在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如

  • Python图像处理PIL各模块详细介绍(推荐)

    Image模块 Image模块是在Python PIL图像处理中常见的模块,对图像进行基础操作的功能基本都包含于此模块内.如open.save.conver.show-等功能. open类 Image.open(file) ⇒ image Image.open(file, mode) ⇒ image 要从文件加载图像,使用 open() 函数, 在 Image 模块: @zhangziju from PIL import Image ##调用库 im = Image.open("E:\mywif

  • python数字图像处理实现直方图与均衡化

    在图像处理中,直方图是非常重要,也是非常有用的一个处理要素. 在skimage库中对直方图的处理,是放在exposure这个模块中. 1.计算直方图 函数:skimage.exposure.histogram(image,nbins=256) 在numpy包中,也提供了一个计算直方图的函数histogram(),两者大同小义. 返回一个tuple(hist, bins_center), 前一个数组是直方图的统计量,后一个数组是每个bin的中间值 import numpy as np from s

  • python图像处理之镜像实现方法

    本文实例讲述了python图像处理之镜像实现方法.分享给大家供大家参考.具体分析如下: 图像的镜像变化不改变图像的形状.图像的镜像变换分为三种:水平镜像.垂直镜像.对角镜像 设图像的大小为M×N,则 水平镜像可按公式 I = i J = N - j + 1 垂直镜像可按公式 I = M - i + 1 J = j 对角镜像可按公式 I = M - i + 1 J = N - j + 1 值得注意的是在OpenCV中坐标是从[0,0]开始的 所以,式中的 +1 在编程时需要改为 -1 这里运行环境

  • Python图像处理之颜色的定义与使用分析

    本文实例讲述了Python图像处理之颜色的定义与使用.分享给大家供大家参考,具体如下: python中的颜色相关的定义在matplotlib模块中,为方便使用,这里给大家展示一下在这个模块中都定义了哪些选颜色. 1.颜色名称的导出 导出代码如下: import matplotlib for name, hex in matplotlib.colors.cnames.iteritems(): print(name, hex) 导出结果如下: names = { 'aliceblue':      

  • python数字图像处理之高级形态学处理

    形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内. 函数为: skimage.morphology.convex_hull_image(image) 输入为二值图像,输出一个逻辑二值图像.在凸包内的点为True, 否则为False 例: import matplotlib.pyplot as plt from skimage import d

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

随机推荐