PyTorch搭建ANN实现时间序列风速预测

目录
  • 数据集
  • 特征构造
  • 数据处理
    • 1.数据预处理
    • 2.数据集构造
  • ANN模型
    • 1.模型训练
    • 2.模型预测及表现

数据集

数据集为Barcelona某段时间内的气象数据,其中包括温度、湿度以及风速等。本文将简单搭建来对风速进行预测。

特征构造

对于风速的预测,除了考虑历史风速数据外,还应该充分考虑其余气象因素的影响。因此,我们根据前24个时刻的风速+下一时刻的其余气象数据来预测下一时刻的风速。

数据处理

1.数据预处理

数据预处理阶段,主要将某些列上的文本数据转为数值型数据,同时对原始数据进行归一化处理。文本数据如下所示:

经过转换后,上述各个类别分别被赋予不同的数值,比如"sky is clear"为0,"few clouds"为1。

def load_data():
    global Max, Min
    df = pd.read_csv('Barcelona/Barcelona.csv')
    df.drop_duplicates(subset=[df.columns[0]], inplace=True)
    # weather_main
    listType = df['weather_main'].unique()
    df.fillna(method='ffill', inplace=True)
    dic = dict.fromkeys(listType)
    for i in range(len(listType)):
        dic[listType[i]] = i
    df['weather_main'] = df['weather_main'].map(dic)
    # weather_description
    listType = df['weather_description'].unique()
    dic = dict.fromkeys(listType)
    for i in range(len(listType)):
        dic[listType[i]] = i
    df['weather_description'] = df['weather_description'].map(dic)
    # weather_icon
    listType = df['weather_icon'].unique()
    dic = dict.fromkeys(listType)
    for i in range(len(listType)):
        dic[listType[i]] = i
    df['weather_icon'] = df['weather_icon'].map(dic)
    # print(df)
    columns = df.columns
    Max = np.max(df['wind_speed'])  # 归一化
    Min = np.min(df['wind_speed'])
    for i in range(2, 17):
        column = columns[i]
        if column == 'wind_speed':
            continue
        df[column] = df[column].astype('float64')
        if len(df[df[column] == 0]) == len(df):  # 全0
            continue
        mx = np.max(df[column])
        mn = np.min(df[column])
        df[column] = (df[column] - mn) / (mx - mn)
    # print(df.isna().sum())
    return df

2.数据集构造

利用当前时刻的气象数据和前24个小时的风速数据来预测当前时刻的风速:

def nn_seq():
    """
    :param flag:
    :param data: 待处理的数据
    :return: X和Y两个数据集,X=[当前时刻的year,month, hour, day, lowtemp, hightemp, 前一天当前时刻的负荷以及前23小时负荷]
                              Y=[当前时刻负荷]
    """
    print('处理数据:')
    data = load_data()
    speed = data['wind_speed']
    speed = speed.tolist()
    speed = torch.FloatTensor(speed).view(-1)
    data = data.values.tolist()
    seq = []
    for i in range(len(data) - 30):
        train_seq = []
        train_label = []
        for j in range(i, i + 24):
            train_seq.append(speed[j])
        # 添加温度、湿度、气压等信息
        for c in range(2, 7):
            train_seq.append(data[i + 24][c])
        for c in range(8, 17):
            train_seq.append(data[i + 24][c])
        train_label.append(speed[i + 24])
        train_seq = torch.FloatTensor(train_seq).view(-1)
        train_label = torch.FloatTensor(train_label).view(-1)
        seq.append((train_seq, train_label))
    # print(seq[:5])
    Dtr = seq[0:int(len(seq) * 0.5)]
    Den = seq[int(len(seq) * 0.50):int(len(seq) * 0.75)]
    Dte = seq[int(len(seq) * 0.75):len(seq)]
    return Dtr, Den, Dte

任意输出其中一条数据:

(tensor([1.0000e+00, 1.0000e+00, 2.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00,
        1.0000e+00, 1.0000e+00, 0.0000e+00, 1.0000e+00, 5.0000e+00, 0.0000e+00,
        2.0000e+00, 0.0000e+00, 0.0000e+00, 5.0000e+00, 0.0000e+00, 2.0000e+00,
        2.0000e+00, 5.0000e+00, 6.0000e+00, 5.0000e+00, 5.0000e+00, 5.0000e+00,
        5.3102e-01, 5.5466e-01, 4.6885e-01, 1.0066e-03, 5.8000e-01, 6.6667e-01,
        0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9338e-01, 0.0000e+00,
        0.0000e+00, 0.0000e+00]), tensor([5.]))

数据被划分为三部分:Dtr、Den以及Dte,Dtr用作训练集,Dte用作测试集。

ANN模型

1.模型训练

ANN模型搭建如下:

def ANN():
    Dtr, Den, Dte = nn_seq()
    my_nn = torch.nn.Sequential(
        torch.nn.Linear(38, 64),
        torch.nn.ReLU(),
        torch.nn.Linear(64, 128),
        torch.nn.ReLU(),
        torch.nn.Linear(128, 1),
    )
    model = my_nn.to(device)
    loss_function = nn.MSELoss().to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    train_inout_seq = Dtr
    # 训练
    epochs = 50
    for i in range(epochs):
        print('当前', i)
        for seq, labels in train_inout_seq:
            seq = seq.to(device)
            labels = labels.to(device)
            y_pred = model(seq)
            single_loss = loss_function(y_pred, labels)
            optimizer.zero_grad()
            single_loss.backward()
            optimizer.step()
        # if i % 2 == 1:
        print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')
    print(f'epoch: {i:3} loss: {single_loss.item():10.10f}')
    state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epochs}
    torch.save(state, 'Barcelona' + ANN_PATH)

可以看到,模型定义的代码段为:

my_nn = torch.nn.Sequential(
    torch.nn.Linear(38, 64),
    torch.nn.ReLU(),
    torch.nn.Linear(64, 128),
    torch.nn.ReLU(),
    torch.nn.Linear(128, 1),
)

第一层全连接层输入维度为38(前24小时风速+14种气象数据),输出维度为64;第二层输入为64,输出128;第三层输入为128,输出为1。

2.模型预测及表现

def ANN_predict(ann, test_seq):
    pred = []
    for seq, labels in test_seq:
        seq = seq.to(device)
        with torch.no_grad():
            pred.append(ann(seq).item())
    pred = np.array([pred])
    return pred

测试:

def test():
    Dtr, Den, Dte = nn_seq()
    ann = torch.nn.Sequential(
        torch.nn.Linear(38, 64),
        torch.nn.ReLU(),
        torch.nn.Linear(64, 128),
        torch.nn.ReLU(),
        torch.nn.Linear(128, 1),
    )
    ann = ann.to(device)
    ann.load_state_dict(torch.load('Barcelona' + ANN_PATH)['model'])
    ann.eval()
    pred = ANN_predict(ann, Dte)
    print(mean_absolute_error(te_y, pred2.T), np.sqrt(mean_squared_error(te_y, pred2.T)))

ANN在Dte上的表现如下表所示:

MAE RMSE
1.04 1.46

以上就是PyTorch搭建ANN实现时间序列风速预测的详细内容,更多关于ANN时序风速预测的资料请关注我们其它相关文章!

(0)

相关推荐

  • PyTorch搭建CNN实现风速预测

    目录 数据集 特征构造 一维卷积 数据处理 1.数据预处理 2.数据集构造 CNN模型 1.模型搭建 2.模型训练 3.模型预测及表现 数据集 数据集为Barcelona某段时间内的气象数据,其中包括温度.湿度以及风速等.本文将利用CNN来对风速进行预测. 特征构造 对于风速的预测,除了考虑历史风速数据外,还应该充分考虑其余气象因素的影响.因此,我们根据前24个时刻的风速+下一时刻的其余气象数据来预测下一时刻的风速. 一维卷积 我们比较熟悉的是CNN处理图像数据时的二维卷积,此时的卷积是一种局部

  • Pytorch 如何实现LSTM时间序列预测

    开发环境说明: Python 35 Pytorch 0.2 CPU/GPU均可 1.LSTM简介 人类在进行学习时,往往不总是零开始,学习物理你会有数学基础.学习英语你会有中文基础等等. 于是对于机器而言,神经网络的学习亦可不再从零开始,于是出现了Transfer Learning,就是把一个领域已训练好的网络用于初始化另一个领域的任务,例如会下棋的神经网络可以用于打德州扑克. 我们这讲的是另一种不从零开始学习的神经网络--循环神经网络(Recurrent Neural Network, RNN

  • pytorch-RNN进行回归曲线预测方式

    任务 通过输入的sin曲线与预测出对应的cos曲线 #初始加载包 和定义参数 import torch from torch import nn import numpy as np import matplotlib.pyplot as plt torch.manual_seed(1) #为了可复现 #超参数设定 TIME_SETP=10 INPUT_SIZE=1 LR=0.02 DOWNLoad_MNIST=True 定义RNN网络结构 from torch.autograd import

  • 运用PyTorch动手搭建一个共享单车预测器

    本文摘自 <深度学习原理与PyTorch实战> 我们将从预测某地的共享单车数量这个实际问题出发,带领读者走进神经网络的殿堂,运用PyTorch动手搭建一个共享单车预测器,在实战过程中掌握神经元.神经网络.激活函数.机器学习等基本概念,以及数据预处理的方法.此外,还会揭秘神经网络这个"黑箱",看看它如何工作,哪个神经元起到了关键作用,从而让读者对神经网络的运作原理有更深入的了解. 3.1 共享单车的烦恼 大约从2016年起,我们的身边出现了很多共享单车.五颜六色.各式各样的共

  • PyTorch搭建ANN实现时间序列风速预测

    目录 数据集 特征构造 数据处理 1.数据预处理 2.数据集构造 ANN模型 1.模型训练 2.模型预测及表现 数据集 数据集为Barcelona某段时间内的气象数据,其中包括温度.湿度以及风速等.本文将简单搭建来对风速进行预测. 特征构造 对于风速的预测,除了考虑历史风速数据外,还应该充分考虑其余气象因素的影响.因此,我们根据前24个时刻的风速+下一时刻的其余气象数据来预测下一时刻的风速. 数据处理 1.数据预处理 数据预处理阶段,主要将某些列上的文本数据转为数值型数据,同时对原始数据进行归一

  • PyTorch搭建LSTM实现时间序列负荷预测

    目录 I. 前言 II. 数据处理 III. LSTM模型 IV. 训练 V. 测试 VI. 源码及数据 I. 前言 在上一篇文章深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中,我详细地解释了如何利用PyTorch来搭建一个LSTM模型,本篇文章的主要目的是搭建一个LSTM模型用于时间序列预测. 系列文章: PyTorch搭建LSTM实现多变量多步长时序负荷预测 PyTorch搭建LSTM实现多变量时序负荷预测 PyTorch深度学习LSTM从input输入

  • PyTorch搭建双向LSTM实现时间序列负荷预测

    目录 I. 前言 II. 原理 Inputs Outputs batch_first 输出提取 III. 训练和预测 IV. 源码及数据 I. 前言 前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM. 系列文章: PyTorch搭建LSTM实现多变量多步长时序负荷预测 PyTorch搭建LSTM实现多变量时序负荷预测 PyTorch深度学习LSTM从input输入到Linear输出 PyTorch搭建LSTM实现时间序列负荷预测 II. 原理 关于LSTM的输入输出在深入理解Py

  • PyTorch搭建LSTM实现多变量多步长时序负荷预测

    目录 I. 前言 II. 数据处理 III. LSTM模型 IV. 训练和预测 V. 源码及数据 I. 前言 在前面的两篇文章PyTorch搭建LSTM实现时间序列预测(负荷预测)和PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)中,我们利用LSTM分别实现了单变量单步长时间序列预测和多变量单步长时间序列预测. 本篇文章主要考虑用PyTorch搭建LSTM实现多变量多步长时间序列预测. 系列文章: PyTorch搭建双向LSTM实现时间序列负荷预测 PyTorch搭建LSTM实现多变

  • PyTorch搭建LSTM实现多变量时序负荷预测

    目录 I. 前言 II. 数据处理 III. LSTM模型 IV. 训练 V. 测试 VI. 源码及数据 I. 前言 在前面的一篇文章PyTorch搭建LSTM实现时间序列预测(负荷预测)中,我们利用LSTM实现了负荷预测,但我们只是简单利用负荷预测负荷,并没有利用到其他一些环境变量,比如温度.湿度等. 本篇文章主要考虑用PyTorch搭建LSTM实现多变量时间序列预测. 系列文章: PyTorch搭建LSTM实现多变量多步长时序负荷预测 PyTorch深度学习LSTM从input输入到Line

  • PyTorch搭建一维线性回归模型(二)

    PyTorch基础入门二:PyTorch搭建一维线性回归模型 1)一维线性回归模型的理论基础 给定数据集,线性回归希望能够优化出一个好的函数,使得能够和尽可能接近. 如何才能学习到参数和呢?很简单,只需要确定如何衡量与之间的差别,我们一般通过损失函数(Loss Funciton)来衡量:.取平方是因为距离有正有负,我们于是将它们变为全是正的.这就是著名的均方误差.我们要做的事情就是希望能够找到和,使得: 均方差误差非常直观,也有着很好的几何意义,对应了常用的欧式距离.现在要求解这个连续函数的最小

  • 如何使用Pytorch搭建模型

    1  模型定义 和TF很像,Pytorch也通过继承父类来搭建模型,同样也是实现两个方法.在TF中是__init__()和call(),在Pytorch中则是__init__()和forward().功能类似,都分别是初始化模型内部结构和进行推理.其它功能比如计算loss和训练函数,你也可以继承在里面,当然这是可选的.下面搭建一个判别MNIST手写字的Demo,首先给出模型代码: import numpy as np import matplotlib.pyplot as plt import

  • 使用Pytorch搭建模型的步骤

    本来是只用Tenorflow的,但是因为TF有些Numpy特性并不支持,比如对数组使用列表进行切片,所以只能转战Pytorch了(pytorch是支持的).还好Pytorch比较容易上手,几乎完美复制了Numpy的特性(但还有一些特性不支持),怪不得热度上升得这么快. 1  模型定义 和TF很像,Pytorch也通过继承父类来搭建自定义模型,同样也是实现两个方法.在TF中是__init__()和call(),在Pytorch中则是__init__()和forward().功能类似,都分别是初始化

  • pytorch 搭建神经网路的实现

    目录 1 数据 (1)导入数据 (2)数据集可视化 (3)为自己制作的数据集创建类 (4)数据集批处理 (5)数据预处理 2 神经网络 (1)定义神经网络类 (3)模型参数 3 最优化模型参数 (1)超参数 (2)损失函数 (3)优化方法 4 模型的训练与测试 (1)训练循环与测试循环 (2)禁用梯度跟踪 5 模型的保存.导入与GPU加速 (1)模型的保存与导入 (2)GPU加速 总结 1 数据 (1)导入数据 我们以Fashion-MNIST数据集为例,介绍一下关于pytorch的数据集导入.

随机推荐