python神经网络ResNet50模型的复现详解

目录
  • 什么是残差网络
  • 什么是ResNet50模型
  • ResNet50网络部分实现代码
  • 图片预测

什么是残差网络

最近看yolo3里面讲到了残差网络,对这个网络结构很感兴趣,于是了解到这个网络结构最初的使用是在ResNet网络里。

Residual net(残差网络):

将靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分。

意味着后面的特征层的内容会有一部分由其前面的某一层线性贡献。

其结构如下:

深度残差网络的设计是为了克服由于网络深度加深而产生的学习效率变低与准确率无法有效提升的问题。

什么是ResNet50模型

ResNet50有两个基本的块,分别名为Conv Block和Identity Block,其中Conv Block输入和输出的维度是不一样的,所以不能连续串联,它的作用是改变网络的维度;

Identity Block输入维度和输出维度相同,可以串联,用于加深网络的。

Conv Block的结构如下:

Identity Block的结构如下:

这两个都是残差网络结构。

总的网络结构如下:

这样看起来可能比较抽象,还有一副很好的我从网上找的图,可以拉到最后面去看哈,放前面太占位置了。

ResNet50网络部分实现代码

#-------------------------------------------------------------#
#   ResNet50的网络部分
#-------------------------------------------------------------#
from __future__ import print_function

import numpy as np
from keras import layers

from keras.layers import Input
from keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D
from keras.layers import Activation,BatchNormalization,Flatten
from keras.models import Model

from keras.preprocessing import image
import keras.backend as K
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input

def identity_block(input_tensor, kernel_size, filters, stage, block):

    filters1, filters2, filters3 = filters

    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
    x = BatchNormalization(name=bn_name_base + '2a')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters2, kernel_size,padding='same', name=conv_name_base + '2b')(x)

    x = BatchNormalization(name=bn_name_base + '2b')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
    x = BatchNormalization(name=bn_name_base + '2c')(x)

    x = layers.add([x, input_tensor])
    x = Activation('relu')(x)
    return x

def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):

    filters1, filters2, filters3 = filters

    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = Conv2D(filters1, (1, 1), strides=strides,
               name=conv_name_base + '2a')(input_tensor)
    x = BatchNormalization(name=bn_name_base + '2a')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters2, kernel_size, padding='same',
               name=conv_name_base + '2b')(x)
    x = BatchNormalization(name=bn_name_base + '2b')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
    x = BatchNormalization(name=bn_name_base + '2c')(x)

    shortcut = Conv2D(filters3, (1, 1), strides=strides,
                      name=conv_name_base + '1')(input_tensor)
    shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut)

    x = layers.add([x, shortcut])
    x = Activation('relu')(x)
    return x

def ResNet50(input_shape=[224,224,3],classes=1000):

    img_input = Input(shape=input_shape)
    x = ZeroPadding2D((3, 3))(img_input)

    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    x = Flatten()(x)
    x = Dense(classes, activation='softmax', name='fc1000')(x)

    model = Model(img_input, x, name='resnet50')

    model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5")

    return model

图片预测

建立网络后,可以用以下的代码进行预测。

if __name__ == '__main__':
    model = ResNet50()
    model.summary()
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    print('Input image shape:', x.shape)
    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

预测所需的已经训练好的ResNet50模型可以在https://github.com/fchollet/deep-learning-models/releases下载。非常方便。
预测结果为:

Predicted: [[('n01871265', 'tusker', 0.41107917), ('n02504458', 'African_elephant', 0.39015812), ('n02504013', 'Indian_elephant', 0.12260196), ('n03000247', 'chain_mail', 0.023176488), ('n02437312', 'Arabian_camel', 0.020982226)]]

ResNet50模型的完整的结构图

以上就是python神经网络ResNet50模型的复现详解的详细内容,更多关于ResNet50模型复现的资料请关注我们其它相关文章!

(0)

相关推荐

  • python神经网络InceptionV3模型复现详解

    目录 神经网络学习小记录21——InceptionV3模型的复现详解 学习前言什么是InceptionV3模型InceptionV3网络部分实现代码图片预测 学习前言 Inception系列的结构和其它的前向神经网络的结构不太一样,每一层的内容不是直直向下的,而是分了很多的块. 什么是InceptionV3模型 InceptionV3模型是谷歌Inception系列里面的第三代模型,其模型结构与InceptionV2模型放在了同一篇论文里,其实二者模型结构差距不大,相比于其它神经网络模型,Inc

  • python神经网络MobileNet模型的复现详解

    目录 什么是MobileNet模型 MobileNet网络部分实现代码 图片预测 什么是MobileNet模型 MobileNet是一种轻量级网络,相比于其它结构网络,它不一定是最准的,但是它真的很轻 MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution. 对于一个卷积点而言: 假设有一个3×3大小的卷积层,其输入通道为16.输出通道为32.具体为,32个3×3大小的卷积核会遍历

  • python神经网络Xception模型复现详解

    目录 什么是Xception模型 Xception网络部分实现代码 图片预测 Xception是继Inception后提出的对Inception v3的另一种改进,学一学总是好的 什么是Xception模型 Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作. 在讲Xception模型之前,首先要讲一下什么是

  • VGG16模型的复现及其详解(包含如何预测)

    目录 神经网络学习小记录16——VGG16模型的复现详解 学习前言什么是VGG16模型VGG网络部分实现代码图片预测 学习前言 学一些比较知名的模型对身体有好处噢! 什么是VGG16模型 VGG是由Simonyan 和Zisserman在文献<Very Deep Convolutional Networks for Large Scale Image Recognition>中提出卷积神经网络模型,其名称来源于作者所在的牛津大学视觉几何组(Visual Geometry Group)的缩写.该

  • python神经网络ResNet50模型的复现详解

    目录 什么是残差网络 什么是ResNet50模型 ResNet50网络部分实现代码 图片预测 什么是残差网络 最近看yolo3里面讲到了残差网络,对这个网络结构很感兴趣,于是了解到这个网络结构最初的使用是在ResNet网络里. Residual net(残差网络): 将靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分. 意味着后面的特征层的内容会有一部分由其前面的某一层线性贡献. 其结构如下: 深度残差网络的设计是为了克服由于网络深度加深而产生的学习效率变低与准确率无法有效提升的

  • python神经网络MobileNetV2模型的复现详解

    目录 什么是MobileNetV2模型 MobileNetV2网络部分实现代码 图片预测 什么是MobileNetV2模型 MobileNet它哥MobileNetV2也是很不错的呢 MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution. MobileNetV2是MobileNet的升级版,它具有两个特征点: 1.Inverted residuals,在ResNet50里我们认识

  • python神经网络MobileNetV3 large模型的复现详解

    目录 神经网络学习小记录38——MobileNetV3(large)模型的复现详解 学习前言什么是MobileNetV3代码下载MobileNetV3(large)的网络结构1.MobileNetV3(large)的整体结构2.MobileNetV3特有的bneck结构 网络实现代码 学习前言 为了防止某位我的粉丝寒假没有办法正常工作,我赶紧看了看MobilenetV3. 什么是MobileNetV3 最新的MobileNetV3的被写在了论文<Searching for MobileNetV3

  • python神经网络MobileNetV3 small模型的复现详解

    目录 什么是MobileNetV3 large与small的区别 MobileNetV3(small)的网络结构 1.MobileNetV3(small)的整体结构 2.MobileNetV3特有的bneck结构 网络实现代码 什么是MobileNetV3 不知道咋地,就是突然想把small也一起写了. 最新的MobileNetV3的被写在了论文<Searching for MobileNetV3>中. 它是mobilnet的最新版,据说效果还是很好的. 作为一种轻量级网络,它的参数量还是一如

  • python神经网络Batch Normalization底层原理详解

    目录 什么是Batch Normalization Batch Normalization的计算公式 Bn层的好处 为什么要引入γ和β变量 Bn层的代码实现 什么是Batch Normalization Batch Normalization是神经网络中常用的层,解决了很多深度学习中遇到的问题,我们一起来学习一哈. Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network T

  • Python pandas RFM模型应用实例详解

    本文实例讲述了Python pandas RFM模型应用.分享给大家供大家参考,具体如下: 什么是RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标: 最近一次消费 (Recency): 客户最近一次交易时间的间隔.R值越大,表示客户交易距今越久,反之则越近: 消费频率 (Frequency): 客户在最近一段时间内交易的次数.F值越大,表示客户交易越频繁,反之则不够活跃: 消费金额 (Monetary): 客户

  • Python自动化测试PO模型封装过程详解

    在自动化中, Selenium 自动化测试中有一个名字经常被提及 PageObject( 思想与面向对象的特征相 同 ) ,通常 PO 模型可以大大提高测试用例的维护效率 优点:可重用,业务和对象分离,代码结构清晰,方便代码维护 核心要素 1. 在 PO 模式中抽离封装集成一个BasePage 类,该基类应该拥有一个只实现 webdriver 实例的属性 2. 每一个 page 都继承 BasePage ,通过 driver 来管理本 page 中元素,将 page 中的操作封装成一个个方法 3

随机推荐