Java中ExecutorService和ThreadPoolExecutor运行原理

目录
  • 为什么要使用线程池
  • 线程池的创建
  • 线程的提交方法
  • 具体实现
  • 总结1
  • ThreadPoolExecutor运行原理
  • 总结2

为什么要使用线程池

服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的。

构建服务器应用程序的一个过于简单的模型应该是:每当一个请求到达就创建一个新线程,然后在新线程中为请求服务。实际上,对于原型开发这种方法工作得很好,但如果试图部署以这种方式运行的服务器应用程序,那么这种方法的严重不足就很明显。

每个请求对应一个线程(thread-per-request)方法的不足之一是:为每个请求创建一个新线程的开销很大;为每个请求创建新线程的服务器在创建和销毁线程上花费的时间和消耗的系统资源要比花在处理实际的用户请求的时间和资源更多。除了创建和销毁线程的开销之外,活动的线程也消耗系统资源(线程的生命周期!)。在一个JVM 里创建太多的线程可能会导致系统由于过度消耗内存而用完内存或“切换过度”。为了防止资源不足,服务器应用程序需要一些办法来限制任何给定时刻处理的请求数目。

线程池为线程生命周期开销问题和资源不足问题提供了解决方案。通过对多个任务重用线程,线程创建的开销被分摊到了多个任务上。其好处是,因为在请求到达时线程已经存在,所以无意中也消除了线程创建所带来的延迟。这样,就可以立即为请求服务,使应用程序响应更快。而且,通过适当地调整线程池中的线程数目,也就是当请求的数目超过某个阈值时,就强制其它任何新到的请求一直等待,直到获得一个线程来处理为止,从而可以防止资源不足。

线程池的创建

ThreadFactory namedThreadFactory = new ThreadFactoryBuilder().setNameFormat("thread-name").build();
    //创建线程池
ExecutorService exc = new ThreadPoolExecutor(20, 20, 30000,
            TimeUnit.MILLISECONDS, new LinkedBlockingQueue(), namedThreadFactory);

/*
	参数的意义
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }
*/

线程的提交方法

在idea中,我们可以通过alt+7(注意不是F7)在左下角查看当前类的所有方法

在图中我们可以看到ExecutorService有execute和submit两种方法,但是他并没有实现execute方法,所以方法是灰的

接下来我们看ExecutorService的实现类ThreadPoolExecutor

可以看到ThreadPoolExecutor 实现了execute这个方法,那接下来我们具体看execute和submit的方法

具体实现

在我第一次学习时,我就是这么简单来理解的

exc.submit() //提交有返回值   传入的为callable和runable  返回值为future
exc.execute() //提交无返回值  传入的为runable

但是我发现为什么submit可以执行callable,又执行runable?这不是两个不同的创建线程的方式吗?我点进去了ThreadPoolExecutor类,但是在其中没有找到submit方法,于是我按了alt+7

在AbstractExecutorService类中发现了submit方法

public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }

public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }

public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

在代码中我们可以看到,三个方法都是用这个代码来统一实现的,

        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;

不同的是,当使用submit而传入的是runable接口时,会多一个返回值的参数,如果没有这个参数则会在newTaskFor中多加一个null参数,我们再进入newTaskFor方法

protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }

protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable);
    }

同样存在两个方法,一个是为了接收runable,一个接收callable,但是这次都是使用了new FutureTask来传入,因为FutureTask可以运行二者

我们知道Thread实现了Runable接口可以实现线程,但关于为什么FutureTask可以运行Callable接口

首先,在下面代码中可以看到FutureTask实现了RunnableFuture,RunnableFuture实现了Runnable,所以可以用过Thread来运行start

public class FutureTask<V> implements RunnableFuture<V> 

public interface RunnableFuture<V> extends Runnable, Future<V> 

FutureTask<Integer> futureTask = new FutureTask(callableTask);
Thread thread = new Thread(futureTask);
thread.start();

而Thread中的start又是调用的接口中的run方法,但是Callable明明没有run方法啊,这就要看FutureTask中的run方法了

在这个FutureTask的run方法中,调用的是Callable的call方法,所以得以运行,并且将返回值另外保存了,关于异步返回值的原理下次再说。

回到new FutureTask(callable);的代码中
我们接着点进去看源码

public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

对于第一个传入callable的我们已经知道了原理,就是FutureTask如何通过Thread运行Callable的。
那么对于第二个传入Runable的代码又是个什么东西?

this.callable = Executors.callable(runnable, result);

好,我们再点进去看源码,进入了一个Executors,这个类没有任何的实现与继承,真是太好了,看方法

public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }

哦豁,又将Runable传入了一个RunnableAdapter类,真复杂,就要看看到底多少层,看这个名字,Adapter,适配器?大概知道里面会有什么操作了,我们再点进去看源码

static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

这是Executors中的一个内部类,它实现了Callable接口,我依稀记得传入的是一个Runable接口,原来在这个类中,将Callable的call方法重写了,其中调用了Runable的run方法,并且具有返回值,还记得这个result吗,在最初的AbstractExecutorService中,对于传入Runable的submit方法有两个,有参数则传递,无参数则传入为null,

总结1

至此,就了解到了为什么submit又可以传入Runable也可以传入Callable。
接下来稍微说一下如何运行。

ThreadPoolExecutor运行原理

细心的小伙伴发现了,说好的submit,竟然又用execute
进入execute方法,直接用ctrl点击无效,我们打开ThreadPoolExecutor中,按alt+7,左下角execute是亮的,方法是在这里实现的

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();

        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

先是判断线程池数量,在判断传入线程状态,满足条件就使用addWorker,不满足就reject拒绝
进入addWorker

private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

这里又是一堆条件验证,都是核心代码,最后通过一个内置类worker来获取线程实例,然后加锁继续验证,条件都满足时,t.start(),终于可以运行

Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            ---
            final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
            ---
            workerAdded = true;
            ---
            if (workerAdded) {
                    t.start();
            ---

总结2

至此,整个流程都已说明,关于Callable和Future完成异步返回值的原理,下次再说

到此这篇关于Java中ExecutorService和ThreadPoolExecutor运行原理的文章就介绍到这了,更多相关Java ExecutorService ThreadPoolExecutor内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • java中Executor,ExecutorService,ThreadPoolExecutor详解

    java中Executor,ExecutorService,ThreadPoolExecutor详解 1.Excutor 源码非常简单,只有一个execute(Runnable command)回调接口 public interface Executor { /** * Executes the given command at some time in the future. The command * may execute in a new thread, in a pooled thre

  • java多线程CountDownLatch与线程池ThreadPoolExecutor/ExecutorService案例

    1.CountDownLatch: 一个同步工具类,它允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行. 2.ThreadPoolExecutor/ExecutorService: 线程池,使用线程池可以复用线程,降低频繁创建线程造成的性能消耗,同时对线程的创建.启动.停止.销毁等操作更简便. 3.使用场景举例: 年末公司组织团建,要求每一位员工周六上午8点到公司门口集合,统一乘坐公司所租大巴前往目的地. 在这个案例中,公司作为主线程,员工作为子线程. 4.代码示例: package

  • Java中ExecutorService和ThreadPoolExecutor运行原理

    目录 为什么要使用线程池 线程池的创建 线程的提交方法 具体实现 总结1 ThreadPoolExecutor运行原理 总结2 为什么要使用线程池 服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的. 构建服务器应用程序的一个过于简单的模型应该是:每当一个请求到达就创建一个新线程,然后在新线程中为请求服务.实际上,对于原型开发这种方法工作得很好,但如果试图部署以这种方式运行的服务器应用程序,那么这种方法的严重不足就很明显. 每个请求对应一个线程(thread-per-

  • 浅谈Java中的atomic包实现原理及应用

    1.同步问题的提出 假设我们使用一个双核处理器执行A和B两个线程,核1执行A线程,而核2执行B线程,这两个线程现在都要对名为obj的对象的成员变量i进行加1操作,假设i的初始值为0,理论上两个线程运行后i的值应该变成2,但实际上很有可能结果为1. 我们现在来分析原因,这里为了分析的简单,我们不考虑缓存的情况,实际上有缓存会使结果为1的可能性增大.A线程将内存中的变量i读取到核1算数运算单元中,然后进行加1操作,再将这个计算结果写回到内存中,因为上述操作不是原子操作,只要B线程在A线程将i增加1的

  • java中ExecutorService创建方法总结

    在对线程进行控制时,Executor虽然能够对其进行管理,但是缺少终止的功能,所以我们要用到Executor的进阶方法ExecutorServic来处理.ExecutorServic也是一种接口,相比较Executor功能更加丰富,支持一些前者没有的用法.下面我们就ExecutorService进行说明,并带来创建的方法. 1.ExecutorService说明 (1)ExecutorService它是线程池定义的一个接口,继承Executor.能够关闭线程池,提交线程获取执行结果,控制线程的执

  • java中Servlet监听器的工作原理及示例详解

    监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听另一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 监听器原理 监听原理 1.存在事件源 2.提供监听器 3.为事件源注册监听器 4.操作事件源,产生事件对象,将事件对象传递给监听器,并且执行监听器相应监听方法 监听器典型案例:监听window窗口的事件监听器 例如:swing开发首先制造Frame**窗体**,窗体本身也是一个显示空间,对窗体提供监听器,监听窗体方法调用或者属性改变:

  • Java中的迭代器和foreach原理

    迭代器是一种设计模式,它的定义为:提供一种方法访问一个容器对象中的各个元素,而又不需暴露该容器对象的内部细节.迭代器模式,就是为容器而生. 在Java中,Iterator称为迭代器,主要用于遍历 Collection 集合中的元素.Iterator 仅用于遍历集合,Iterator 本身并不提供承装对象的能力.如果需要创建Iterator 对象,则必须有一个被迭代的集合.Collection接口继承了java.lang.Iterable接口,该接口有一个iterator()方法,那么所有实现了C

  • Java中OAuth2.0第三方授权原理与实战

    目录 RFC6749 OAuth 2.0授权4大模式 合同到期后的续约机制 OAuth2.0第三方授权实战 oauth-client oauth-server RFC6749 OAuth2的官方文档在RFC6749:https://datatracker.ietf.org/doc/html/rfc6749 以王者荣耀请求微信登录的过程为例 A:Client申请访问用户资源 B:用户授权(过程较复杂)一次有效 C:Client向Server请求一个长时间有效的token D:返回token E:使

  • Java中ReentrantLock和ReentrantReadWriteLock的原理

    目录 ReentrantLock 原理 概念 核心变量和构造器 核心方法 ReentrantReadWriteLock 原理 用例 核心变量和构造器 Sync类 tryAcquire获取写锁的流程 tryAcquireShared获取读锁的流程获取写锁的流程 fullTryAcquireShared完全获取读锁流程 tryRelease释放写锁的流程 tryReleaseShared释放读锁的流程 readerShouldBlock和writerShouldBlock模板方法公平锁实现 read

  • Java中读写锁ReadWriteLock的原理与应用详解

    目录 什么是读写锁? 为什么需要读写锁? 读写锁的特点 读写锁的使用场景 读写锁的主要成员和结构图 读写锁的实现原理 读写锁总结 Java并发编程提供了读写锁,主要用于读多写少的场景,今天我就重点来讲解读写锁的底层实现原理 什么是读写锁? 读写锁并不是JAVA所特有的读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的. 所谓的读

  • 一文带你搞懂Java中Synchronized和Lock的原理与使用

    目录 1.Synchronized与Lock对比 2.Synchronized与Lock原理 2.1 Synchronized原理 2.2 Lock原理 3.Synchronized与Lock使用 Synchronized Lock 4.相关问题 1.Synchronized与Lock对比 实现方式:Synchronized是Java语言内置的关键字,而Lock是一个Java接口. 锁的获取和释放:Synchronized是隐式获取和释放锁,由Java虚拟机自动完成:而Lock需要显式地调用lo

  • 深入解析Java中的Classloader的运行机制

    java有两种类型的classload,一种是user-defined的,一种是jvm内置的bootstrap class loader,所有user-defined的class loader都是java.lang.ClassLoader的子类. 而jvm内置的class loader有3种,分别是 Bootstrap ClassLoader, Extension ClassLoader(即ExtClassLoader),System ClassLoader(即AppClassLoader).

随机推荐