opencv-python 提取sift特征并匹配的实例

我就废话不多说,直接上代码吧!

# -*- coding: utf-8 -*-
import cv2
import numpy as np
from find_obj import filter_matches,explore_match
from matplotlib import pyplot as plt

def getSift():
  '''
  得到并查看sift特征
  '''
  img_path1 = '../../data/home.jpg'
  #读取图像
  img = cv2.imread(img_path1)
  #转换为灰度图
  gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #创建sift的类
  sift = cv2.SIFT()
  #在图像中找到关键点 也可以一步计算#kp, des = sift.detectAndCompute
  kp = sift.detect(gray,None)
  print type(kp),type(kp[0])
  #Keypoint数据类型分析 http://www.cnblogs.com/cj695/p/4041399.html
  print kp[0].pt
  #计算每个点的sift
  des = sift.compute(gray,kp)
  print type(kp),type(des)
  #des[0]为关键点的list,des[1]为特征向量的矩阵
  print type(des[0]), type(des[1])
  print des[0],des[1]
  #可以看出共有885个sift特征,每个特征为128维
  print des[1].shape
  #在灰度图中画出这些点
  img=cv2.drawKeypoints(gray,kp)
  #cv2.imwrite('sift_keypoints.jpg',img)
  plt.imshow(img),plt.show()

def matchSift():
  '''
  匹配sift特征
  '''
  img1 = cv2.imread('../../data/box.png', 0) # queryImage
  img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
  sift = cv2.SIFT()
  kp1, des1 = sift.detectAndCompute(img1, None)
  kp2, des2 = sift.detectAndCompute(img2, None)
  # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
  bf = cv2.BFMatcher()
  #返回k个最佳匹配
  matches = bf.knnMatch(des1, des2, k=2)
  # cv2.drawMatchesKnn expects list of lists as matches.
  #opencv2.4.13没有drawMatchesKnn函数,需要将opencv2.4.13\sources\samples\python2下的common.py和find_obj文件放入当前目录,并导入
  p1, p2, kp_pairs = filter_matches(kp1, kp2, matches)
  explore_match('find_obj', img1, img2, kp_pairs) # cv2 shows image
  cv2.waitKey()
  cv2.destroyAllWindows()

def matchSift3():
  '''
  匹配sift特征
  '''
  img1 = cv2.imread('../../data/box.png', 0) # queryImage
  img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
  sift = cv2.SIFT()
  kp1, des1 = sift.detectAndCompute(img1, None)
  kp2, des2 = sift.detectAndCompute(img2, None)
  # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
  bf = cv2.BFMatcher()
  #返回k个最佳匹配
  matches = bf.knnMatch(des1, des2, k=2)
  # cv2.drawMatchesKnn expects list of lists as matches.
  #opencv3.0有drawMatchesKnn函数
  # Apply ratio test
  # 比值测试,首先获取与A 距离最近的点B(最近)和C(次近),只有当B/C
  # 小于阈值时(0.75)才被认为是匹配,因为假设匹配是一一对应的,真正的匹配的理想距离为0
  good = []
  for m, n in matches:
    if m.distance < 0.75 * n.distance:
      good.append([m])
  img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:10], None, flags=2)
  cv2.drawm
  plt.imshow(img3), plt.show()

matchSift()

以上这篇opencv-python 提取sift特征并匹配的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python opencv之SIFT算法示例

    本文介绍了python opencv之SIFT算法示例,分享给大家,具体如下: 目标: 学习SIFT算法的概念 学习在图像中查找SIFT关键的和描述符 原理: (原理部分自己找了不少文章,内容中有不少自己理解和整理的东西,为了方便快速理解内容和能够快速理解原理,本文尽量不使用数学公式,仅仅使用文字来描述.本文中有很多引用别人文章的内容,仅供个人记录使用,若有错误,请指正出来,万分感谢) 之前的harris算法和Shi-Tomasi 算法,由于算法原理所致,具有旋转不变性,在目标图片发生旋转时依然

  • python 下 CMake 安装配置 OPENCV 4.1.1的方法

    CMake 安装配置 OPENCV 4.1.1 解决各种问题 方法一 python 可以直接pip install opencv-contrib-python==3.4.x.x 安装,老版本的库包含SIFT等算法.但是,python不支持GPU的,对于JAVA等其他语言想调用opencv或者想使用更更高级的算法,那么还是必须得安装更高版本,下面介绍另外一种方法. 这个方法不提供SIFT和 SURF算法,因为这两个算法申请了专利,所有主要通过CMake设置OPENCV_ENABLE_NONFREE

  • opencv-python 提取sift特征并匹配的实例

    我就废话不多说,直接上代码吧! # -*- coding: utf-8 -*- import cv2 import numpy as np from find_obj import filter_matches,explore_match from matplotlib import pyplot as plt def getSift(): ''' 得到并查看sift特征 ''' img_path1 = '../../data/home.jpg' #读取图像 img = cv2.imread(i

  • 详解opencv Python特征检测及K-最近邻匹配

    鉴于即将启程旅行,先上传篇简单的图像检索介绍,与各位一起学习opencv的同学共勉 一.特征检测 图片的特征主要分为角点,斑点,边,脊向等,都是常用特征检测算法所检测到的图像特征· 1.Harris角点检测 先将图片转换为灰度模式,再使用以下函数检测图片的角点特征: dst=cv2.cornerHarris(src, blockSize, ksize, k[, dst[, borderType]]) 重点关注第三个参数,这里使用了Sobel算子,简单来说,其取为3-31间的奇数,定义了角点检测的

  • Python提取频域特征知识点浅析

    在多数的现代语音识别系统中,人们都会用到频域特征.梅尔频率倒谱系数(MFCC),首先计算信号的功率谱,然后用滤波器和离散余弦变换的变换来提取特征.本文重点介绍如何提取MFCC特征. 首先创建有一个Python文件,并导入库文件:     from scipy.io import wavfile     from python_speech_features import mfcc, logfbank     import matplotlib.pylab as plt1.首先创建有一个Pytho

  • 利用Python提取PDF文本的简单方法实例

    目录 第一步,安装工具库 第二步,编写代码 第三步,执行 最后的话 你好,一般情况下,Ctrl+C 是最简单的方法,当无法 Ctrl+C 时,我们借助于 Python,以下是具体步骤: 第一步,安装工具库 1.tika — 用于从各种文件格式中进行文档类型检测和内容提取 2.wand — 基于 ctypes 的简单 ImageMagick 绑定 3.pytesseract — OCR 识别工具 创建一个虚拟环境,安装这些工具 python -m venv venv source venv/bin

  • opencv python 基于KNN的手写体识别的实例

    OCR of Hand-written Data using kNN OCR of Hand-written Digits 我们的目标是构建一个可以读取手写数字的应用程序, 为此,我们需要一些train_data和test_data. OpenCV附带一个images digits.png(在文件夹opencv\sources\samples\data\中),它有5000个手写数字(每个数字500个,每个数字是20x20图像).所以首先要将图片切割成5000个不同图片,每个数字变成一个单行400

  • Python中提取人脸特征的三种方法详解

    目录 1.直接使用dlib 2.使用深度学习方法查找人脸,dlib提取特征 3.使用insightface提取人脸特征 安装InsightFace 提取特征 1.直接使用dlib 安装dlib方法: Win10安装dlib GPU过程详解 思路: 1.使用dlib.get_frontal_face_detector()方法检测人脸的位置. 2.使用 dlib.shape_predictor()方法得到人脸的关键点. 3.使用dlib.face_recognition_model_v1()方法提取

  • python利用opencv实现SIFT特征提取与匹配

    本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下 1.SIFT 1.1.sift的定义 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子. 1.2.sift算法介绍 SIFT由David Lowe在1999年提出,在2004年加以完善 .SIFT在数字图像的特征描述方面当之无愧可称之为最红

  • 应用OpenCV和Python进行SIFT算法的实现详解

    应用OpenCV和Python进行SIFT算法的实现 如下图为进行测试的gakki101和gakki102,分别验证基于BFmatcher.FlannBasedMatcher等的SIFT算法,对比其优劣.为体现出匹配效果对于旋转特性的优势,将图gakki101做成具有旋转特性的效果. 基于BFmatcher的SIFT实现 BFmatcher(Brute-Force Matching)暴力匹配,应用BFMatcher.knnMatch( )函数来进行核心的匹配,knnMatch(k-nearest

  • OpenCV实现特征检测和特征匹配方法汇总

    目录 1.SURF 2.SIFT 3.ORB 4.FAST 5.Harris角点 一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要.这篇文章我总结了视觉领域最常用的几种特征点以及特征匹配的方法. 在计算机视觉领域,兴趣点(也称关键点或特征点)的概念已经得到了广泛的应用, 包括目标识别. 图像配准. 视觉跟踪. 三维重建等. 这个概念的原理是, 从图

  • 浅析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

    目录 main.cpp CMakeLists.txt 执行效果 ICP CMakeLists.txt 执行效果 在进行编译视觉SLAM时,书中提到了ORB.SURF.SIFT提取方法,以及特征提取方法暴力匹配(Brute-Force Matcher)和快速近邻匹配(FLANN).以及7.9讲述的3D-3D:迭代最近点(Iterative Closest Point,ICP)方法,ICP 的求解方式有两种:利用线性代数求解(主要是SVD),以及利用非线性优化方式求解. 完整代码代码如下: 链接:h

随机推荐