Python如何利用opencv实现手势识别

目录
  • 获取视频(摄像头)
  • 肤色检测
  • 轮廓处理

前言:

网上搜到了一些关于手势处理的实验,我在这儿简单的实现一下,主要运用的知识就是opencv,python基本语法,图像处理基础知识。

获取视频(摄像头)

这部分没啥说的,就是获取摄像头。

cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件
#cap = cv2.VideoCapture(0)#读取摄像头
while(True):
    ret, frame = cap.read()    key = cv2.waitKey(50) & 0xFF
    if key == ord('q'):
      break
cap.release()
cv2.destroyAllWindows()

肤色检测

这里使用的是椭圆肤色检测模型

在RGB空间里人脸的肤色受亮度影响相当大,所以肤色点很难从非肤色点中分离出来,也就是说在此空间经过处理后,肤色点是离散的点,中间嵌有很多非肤色,这为肤色区域标定(人脸标定、眼睛等)带来了难题。如果把RGB转为YCrCb空间的话,可以忽略Y(亮度)的影响,因为该空间受亮度影响很小,肤色会产生很好的类聚。这样就把三维的空间将为二维的CrCb,肤色点会形成一定得形状,如:人脸的话会看到一个人脸的区域,手臂的话会看到一条手臂的形态。

def A(img):
    YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间
    (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
    cr1 = cv2.GaussianBlur(cr, (5,5), 0)
    _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理
    res = cv2.bitwise_and(img,img, mask = skin)
    return res

轮廓处理

轮廓处理的话主要用到两个函数,cv2.findContours和cv2.drawContours,这两个函数的使用使用方法很容易搜到就不说了,这部分主要的问题是提取到的轮廓有很多个,但是我们只需要手的轮廓,所以我们要用sorted函数找到最大的轮廓。

def B(img):
    #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
    h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓
    contour = h[0]
    contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序
    #contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
    bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布
    ret = cv2.dra
wContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓
    return ret

全部代码:

""" 从视频读取帧保存为图片"""
import cv2
import numpy as np
cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件
#cap = cv2.VideoCapture(0)#读取摄像头
#皮肤检测
def A(img):

    YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间
    (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
    cr1 = cv2.GaussianBlur(cr, (5,5), 0)
    _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理
    res = cv2.bitwise_and(img,img, mask = skin)
    return res
def B(img):
    #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
    h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓
    contour = h[0]
    contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序
    #contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
    bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布
    ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓
    return ret
while(True):
    ret, frame = cap.read()
    #下面三行可以根据自己的电脑进行调节
    src = cv2.resize(frame,(400,350), interpolation=cv2.INTER_CUBIC)#窗口大小
    cv2.rectangle(src, (90, 60), (300, 300 ), (0, 255, 0))#框出截取位置
    roi = src[60:300 , 90:300]  # 获取手势框图

    res = A(roi)  # 进行肤色检测
    cv2.imshow("0",roi)
    gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
    dst = cv2.Laplacian(gray, cv2.CV_16S, ksize = 3)
    Laplacian = cv2.convertScaleAbs(dst)
    contour = B(Laplacian)#轮廓处理
    cv2.imshow("2",contour)

    key = cv2.waitKey(50) & 0xFF
    if key == ord('q'):
            break
cap.release()
cv2.destroyAllWindows()

到此这篇关于Python如何利用opencv实现手势识别的文章就介绍到这了,更多相关 Python手势识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python如何使用opencv进行手势识别详解

    目录 前言 原理 程序部分 附另一个手势识别实例 总结 前言 本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等. 原理 首先先进行手部的检测,找到之后会做Hand Landmarks. 将手掌的21个点找到,然后我们就可以通过手掌的21个点的坐标推测出来手势,或者在干什么. 程序部分 第一安装Opencv pip install opencv-python 第二安装mediapipe pip install mediapipe

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • OpenCV+Python3.5 简易手势识别的实现

    检测剪刀石头布三种手势,通过摄像头输入,方法如下: 选用合适颜色空间及阈值提取皮肤部分 使用滤波腐蚀膨胀等方法去噪 边缘检测 寻用合适方法分类 OpenCV用摄像头捕获视频 采用方法:调用OpenCV--cv2.VideoCapture() def video_capture(): cap = cv2.VideoCapture(0) while True: # capture frame-by-frame ret, frame = cap.read() # our operation on th

  • python+mediapipe+opencv实现手部关键点检测功能(手势识别)

    目录 一.mediapipe是什么? 二.使用步骤 1.引入库 2.主代码 3.识别结果 补充: 一.mediapipe是什么? mediapipe官网 二.使用步骤 1.引入库 代码如下: import cv2 from mediapipe import solutions import time 2.主代码 代码如下: cap = cv2.VideoCapture(0) mpHands = solutions.hands hands = mpHands.Hands() mpDraw = so

  • Python如何利用opencv实现手势识别

    目录 获取视频(摄像头) 肤色检测 轮廓处理 前言: 网上搜到了一些关于手势处理的实验,我在这儿简单的实现一下,主要运用的知识就是opencv,python基本语法,图像处理基础知识. 获取视频(摄像头) 这部分没啥说的,就是获取摄像头. cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件 #cap = cv2.VideoCapture(0)#读取摄像头 while(True): ret, frame = cap.re

  • 在python中利用opencv简单做图片比对的方法

    下面代码中利用了两种比对的方法,一 对图片矩阵(m x m)求解特征值,通过比较特征值是否在一定的范围内,判断图片是否相同.二 对图片矩阵(m x m)中1求和,通过比较sum和来比较图片. # -*- coding: utf-8 -*- import cv2 as cv import numpy as np import os file_dir_a='C:\Users\wt\Desktop\data\image1\\' file_dir_b='C:\Users\wt\Desktop\data\

  • 在Python下利用OpenCV来旋转图像的教程

    OpenCV是应用最被广泛的的开源视觉库.他允许你使用很少的代码来检测图片或视频中的人脸. 这里有一些互联网上的教程来阐述怎么在OpenCV中使用仿射变换(affine transform)旋转图片--他们并没有处理旋转一个图片里的矩形一般会把矩形的边角切掉这一问题,所以产生的图片需要修改.当正确的使用一点代码时,这是一点瑕疵. def rotate_about_center(src, angle, scale=1.): w = src.shape[1] h = src.shape[0] ran

  • python利用Opencv实现人脸识别功能

    本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下 首先:需要在在自己本地安装opencv具体步骤可以问度娘 如果从事于开发中的话建议用第三方的人脸识别(推荐阿里) 1.视频流中进行人脸识别 # -*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(w

  • 利用OpenCV和Python实现查找图片差异

    使用OpenCV和Python查找图片差异 flyfish 方法1 均方误差的算法(Mean Squared Error , MSE) 下面的一些表达与<TensorFlow - 协方差矩阵>式子表达式一样的 拟合 误差平方和( sum of squared errors) residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared errors of

  • python利用opencv实现SIFT特征提取与匹配

    本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下 1.SIFT 1.1.sift的定义 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子. 1.2.sift算法介绍 SIFT由David Lowe在1999年提出,在2004年加以完善 .SIFT在数字图像的特征描述方面当之无愧可称之为最红

  • Python 利用OpenCV给照片换底色的示例代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等. 1. 读入并显示图片 im

  • python利用opencv保存、播放视频

    代码已上传至:https://gitee.com/tqbx/python-opencv/tree/master/Getting_started_videos 目标 学习读取视频,播放视频,保存视频. 学习从相机中捕捉帧并展示. 学习cv2.VideoCapture(),cv2.VideoWriter()的使用 从相机中捕捉视频 通过自带摄像头捕捉视频,并将其转化为灰度视频显示出来. 基本步骤如下: 1.首先创建一个VideoCapture对象,它的参数包含两种: 设备索引,指定摄像机的编号. 视

  • python 利用opencv实现图像网络传输

    本代码主要实现的是利用网络传输图片,用在我的树莓派项目之上.该项目在PC上运行服务端,树莓派上运行客户端,两者连接到同一局域网中,修改代码中的IP地址,就可以实现将树莓派采集到的图像数据实时传输到PC端.先运行服务端代码,然后运行客户端代码即可.树莓派摄像头使用的是普通的USB摄像头,并且在树莓派上安装了opencv,在树莓派上安装opencv的过程可以参考https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-open

随机推荐