jvm调优的几种场景(小结)

目录
  • 一、cpu占用过高
    • (1)用top命令查看cpu占用情况
    • (2)用top -Hp命令查看线程的情况
    • (3)把线程号转换为16进制
    • (4)用jstack工具查看线程栈情况
  • 二、死锁
  • 三、内存泄漏
  • 四、总结

假定你已经了解了运行时的数据区域和常用的垃圾回收算法,也了解了Hotspot支持的垃圾回收器。

一、cpu占用过高

cpu占用过高要分情况讨论,是不是业务上在搞活动,突然有大批的流量进来,而且活动结束后cpu占用率就下降了,如果是这种情况其实可以不用太关心,因为请求越多,需要处理的线程数越多,这是正常的现象。话说回来,如果你的服务器配置本身就差,cpu也只有一个核心,这种情况,稍微多一点流量就真的能够把你的cpu资源耗尽,这时应该考虑先把配置提升吧。

第二种情况,cpu占用率长期过高,这种情况下可能是你的程序有那种循环次数超级多的代码,甚至是出现死循环了。排查步骤如下:

(1)用top命令查看cpu占用情况

这样就可以定位出cpu过高的进程。在linux下,top命令获得的进程号和jps工具获得的vmid是相同的:

(2)用top -Hp命令查看线程的情况

可以看到是线程id为7287这个线程一直在占用cpu

(3)把线程号转换为16进制

[root@localhost ~]# printf "%x" 7287
1c77

记下这个16进制的数字,下面我们要用

(4)用jstack工具查看线程栈情况

[root@localhost ~]# jstack 7268 | grep 1c77 -A 10
"http-nio-8080-exec-2" #16 daemon prio=5 os_prio=0 tid=0x00007fb66ce81000 nid=0x1c77 runnable [0x00007fb639ab9000]
   java.lang.Thread.State: RUNNABLE
	at com.spareyaya.jvm.service.EndlessLoopService.service(EndlessLoopService.java:19)
	at com.spareyaya.jvm.controller.JVMController.endlessLoop(JVMController.java:30)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.java:190)
	at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:138)
	at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:105)

通过jstack工具输出现在的线程栈,再通过grep命令结合上一步拿到的线程16进制的id定位到这个线程的运行情况,其中jstack后面的7268是第(1)步定位到的进程号,grep后面的是(2)、(3)步定位到的线程号。

从输出结果可以看到这个线程处于运行状态,在执行com.spareyaya.jvm.service.EndlessLoopService.service这个方法,代码行号是19行,这样就可以去到代码的19行,找到其所在的代码块,看看是不是处于循环中,这样就定位到了问题。

二、死锁

死锁并没有第一种场景那么明显,web应用肯定是多线程的程序,它服务于多个请求,程序发生死锁后,死锁的线程处于等待状态(WAITING或TIMED_WAITING),等待状态的线程不占用cpu,消耗的内存也很有限,而表现上可能是请求没法进行,最后超时了。在死锁情况不多的时候,这种情况不容易被发现。

可以使用jstack工具来查看

(1)jps查看java进程

[root@localhost ~]# jps -l
8737 sun.tools.jps.Jps
8682 jvm-0.0.1-SNAPSHOT.jar

(2)jstack查看死锁问题

由于web应用往往会有很多工作线程,特别是在高并发的情况下线程数更多,于是这个命令的输出内容会十分多。jstack最大的好处就是会把产生死锁的信息(包含是什么线程产生的)输出到最后,所以我们只需要看最后的内容就行了

Java stack information for the threads listed above:
===================================================
"Thread-4":
	at com.spareyaya.jvm.service.DeadLockService.service2(DeadLockService.java:35)
	- waiting to lock <0x00000000f5035ae0> (a java.lang.Object)
	- locked <0x00000000f5035af0> (a java.lang.Object)
	at com.spareyaya.jvm.controller.JVMController.lambda$deadLock$1(JVMController.java:41)
	at com.spareyaya.jvm.controller.JVMController$$Lambda$457/1776922136.run(Unknown Source)
	at java.lang.Thread.run(Thread.java:748)
"Thread-3":
	at com.spareyaya.jvm.service.DeadLockService.service1(DeadLockService.java:27)
	- waiting to lock <0x00000000f5035af0> (a java.lang.Object)
	- locked <0x00000000f5035ae0> (a java.lang.Object)
	at com.spareyaya.jvm.controller.JVMController.lambda$deadLock$0(JVMController.java:37)
	at com.spareyaya.jvm.controller.JVMController$$Lambda$456/474286897.run(Unknown Source)
	at java.lang.Thread.run(Thread.java:748)

Found 1 deadlock.

发现了一个死锁,原因也一目了然。

三、内存泄漏

我们都知道,java和c++的最大区别是前者会自动收回不再使用的内存,后者需要程序员手动释放。在c++中,如果我们忘记释放内存就会发生内存泄漏。但是,不要以为jvm帮我们回收了内存就不会出现内存泄漏。

程序发生内存泄漏后,进程的可用内存会慢慢变少,最后的结果就是抛出OOM错误。发生OOM错误后可能会想到是内存不够大,于是把-Xmx参数调大,然后重启应用。这么做的结果就是,过了一段时间后,OOM依然会出现。最后无法再调大最大堆内存了,结果就是只能每隔一段时间重启一下应用。

内存泄漏的另一个可能的表现是请求的响应时间变长了。这是因为频繁发生的GC会暂停其它所有线程(Stop The World)造成的。

为了模拟这个场景,使用了以下的程序

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Main {

    public static void main(String[] args) {
        Main main = new Main();
        while (true) {
            try {
                Thread.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            main.run();
        }
    }

    private void run() {
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < 10; i++) {
            executorService.execute(() -> {
                // do something...
            });
        }
    }
}

运行参数是-Xms20m -Xmx20m -XX:+PrintGC,把可用内存调小一点,并且在发生gc时输出信息,运行结果如下

...
[GC (Allocation Failure)  12776K->10840K(18432K), 0.0309510 secs]
[GC (Allocation Failure)  13400K->11520K(18432K), 0.0333385 secs]
[GC (Allocation Failure)  14080K->12168K(18432K), 0.0332409 secs]
[GC (Allocation Failure)  14728K->12832K(18432K), 0.0370435 secs]
[Full GC (Ergonomics)  12832K->12363K(18432K), 0.1942141 secs]
[Full GC (Ergonomics)  14923K->12951K(18432K), 0.1607221 secs]
[Full GC (Ergonomics)  15511K->13542K(18432K), 0.1956311 secs]
...
[Full GC (Ergonomics)  16382K->16381K(18432K), 0.1734902 secs]
[Full GC (Ergonomics)  16383K->16383K(18432K), 0.1922607 secs]
[Full GC (Ergonomics)  16383K->16383K(18432K), 0.1824278 secs]
[Full GC (Allocation Failure)  16383K->16383K(18432K), 0.1710382 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1829138 secs]
[Full GC (Ergonomics) Exception in thread "main"  16383K->16382K(18432K), 0.1406222 secs]
[Full GC (Allocation Failure)  16382K->16382K(18432K), 0.1392928 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1546243 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1755271 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1699080 secs]
[Full GC (Allocation Failure)  16382K->16382K(18432K), 0.1697982 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1851136 secs]
[Full GC (Allocation Failure)  16382K->16382K(18432K), 0.1655088 secs]
java.lang.OutOfMemoryError: Java heap space

可以看到虽然一直在gc,占用的内存却越来越多,说明程序有的对象无法被回收。但是上面的程序对象都是定义在方法内的,属于局部变量,局部变量在方法运行结果后,所引用的对象在gc时应该被回收啊,但是这里明显没有。

为了找出到底是哪些对象没能被回收,我们加上运行参数-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=heap.bin,意思是发生OOM时把堆内存信息dump出来。运行程序直至异常,于是得到heap.dump文件,然后我们借助eclipse的MAT插件来分析,如果没有安装需要先安装。

然后File->Open Heap Dump... ,然后选择刚才dump出来的文件,选择Leak Suspects

MAT会列出所有可能发生内存泄漏的对象

可以看到居然有21260个Thread对象,3386个ThreadPoolExecutor对象,如果你去看一下java.util.concurrent.ThreadPoolExecutor的源码,可以发现线程池为了复用线程,会不断地等待新的任务,线程也不会回收,需要调用其shutdown方法才能让线程池执行完任务后停止。

其实线程池定义成局部变量,好的做法是设置成单例。

上面只是其中一种处理方法

在线上的应用,内存往往会设置得很大,这样发生OOM再把内存快照dump出来的文件就会很大,可能大到在本地的电脑中已经无法分析了(因为内存不足够打开这个dump文件)。这里介绍另一种处理办法:

(1)用jps定位到进程号

C:\Users\spareyaya\IdeaProjects\maven-project\target\classes\org\example\net>jps -l
24836 org.example.net.Main
62520 org.jetbrains.jps.cmdline.Launcher
129980 sun.tools.jps.Jps
136028 org.jetbrains.jps.cmdline.Launcher

因为已经知道了是哪个应用发生了OOM,这样可以直接用jps找到进程号135988

(2)用jstat分析gc活动情况

jstat是一个统计java进程内存使用情况和gc活动的工具,参数可以有很多,可以通过jstat -help查看所有参数以及含义

C:\Users\spareyaya\IdeaProjects\maven-project\target\classes\org\example\net>jstat -gcutil -t -h8 24836 1000
Timestamp         S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT     GCT
           29.1  32.81   0.00  23.48  85.92  92.84  84.13     14    0.339     0    0.000    0.339
           30.1  32.81   0.00  78.12  85.92  92.84  84.13     14    0.339     0    0.000    0.339
           31.1   0.00   0.00  22.70  91.74  92.72  83.71     15    0.389     1    0.233    0.622

上面是命令意思是输出gc的情况,输出时间,每8行输出一个行头信息,统计的进程号是24836,每1000毫秒输出一次信息。

输出信息是Timestamp是距离jvm启动的时间,S0、S1、E是新生代的两个Survivor和Eden,O是老年代区,M是Metaspace,CCS使用压缩比例,YGC和YGCT分别是新生代gc的次数和时间,FGC和FGCT分别是老年代gc的次数和时间,GCT是gc的总时间。虽然发生了gc,但是老年代内存占用率根本没下降,说明有的对象没法被回收(当然也不排除这些对象真的是有用)。

(3)用jmap工具dump出内存快照

jmap可以把指定java进程的内存快照dump出来,效果和第一种处理办法一样,不同的是它不用等OOM就可以做到,而且dump出来的快照也会小很多。

jmap -dump:live,format=b,file=heap.bin 24836

这时会得到heap.bin的内存快照文件,然后就可以用eclipse来分析了。

四、总结

以上三种严格地说还算不上jvm的调优,只是用了jvm工具把代码中存在的问题找了出来。我们进行jvm的主要目的是尽量减少停顿时间,提高系统的吞吐量。但是如果我们没有对系统进行分析就盲目去设置其中的参数,可能会得到更坏的结果,jvm发展到今天,各种默认的参数可能是实验室的人经过多次的测试来做平衡的,适用大多数的应用场景。如果你认为你的jvm确实有调优的必要,也务必要取样分析,最后还得慢慢多次调节,才有可能得到更优的效果。

到此这篇关于jvm调优的几种场景(小结)的文章就介绍到这了,更多相关jvm调优 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解JVM中的GC调优

    那些GC的默认值 其实GC或者说JVM的参数非常非常的多,有控制内存使用的: 有控制JIT的: 有控制分代比例的,也有控制GC并发的: 当然,大部分的参数其实并不需要我们自行去调整,JVM会很好的动态帮我们设置这些变量的值. 如果我们不去设置这些值,那么对GC性能比较有影响的参数和他们的默认值有哪些呢? GC的选择 我们知道JVM中的GC有很多种,不同的GC选择对java程序的性能影响还是比较大的. 在JDK9之后,G1已经是默认的垃圾回收器了. 我们看一下G1的调优参数. G1是基于分代技术的

  • java虚拟机之JVM调优详解

    JVM常用命令行参数 1. 查看参数列表 虚拟机参数分为基本和扩展两类,在命令行中输入 JAVA_HOME\bin\java就可得到基本参数列表. 在命令行输入 JAVA_HOME\bin\java –X就可得到扩展参数列表. 2. 基本参数说明: -client,-server: 两种Java虚拟机启动方式,client模式启动比较快,但是性能和内存管理相对较差,server模式启动比较慢,但是运行性能比较高,windos上采用的是client模式,Linux采用server模式 -class

  • Java JVM原理与调优_动力节点Java学院整理

    JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的.Java虚拟机包括一套字节码指令集.一组寄存器.一个栈.一个垃圾回收堆和一个存储方法域. JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行.是运行Java应用最底层部分. JDK(Java Development kit) 整个Java的核心,包括了Java运行环境(Java Runtime E

  • 基于JVM 调优的技巧总结分析

    这篇是技巧性的文章,如果要找关于GC或者调整内纯的文章,看我其他几篇文章.因为是JVM 调优总结,所以废话少说.从各方面一共收集到以下几个方法:1.升级 JVM 版本.如果能使用64-bit,使用64-bit JVM.    基本上没什么好解释的,很简单将JVM升级到最新的版本.如果你还是使用JDK1.4甚至是更早的JVM,那你首先要做的就是升级.因为JVM从1.4- >1.5->1.6可不是仅仅的版本号升级,或者仅仅往里面加了一堆新的语言特性,这么简单.而是真正在JVM做了重大的改进,每次版

  • JVM性能调优实战:让你的IntelliJ Idea纵享丝滑

    本文已被Github仓库收录 https://github.com/silently9527/JavaCore 前言 在前面整理了一篇关于JVM故障诊断和处理工具,考虑到大部分的Java程序员都使用的是IntelliJ Idea,本篇就使用工具来实战演练对IntelliJ Idea运行速度调优 调优前的运行状态 原始配置内容 要查询idea原始配置文件的路径可以在VisualVM中的概述中查看 原始配置内容: -XX:ReservedCodeCacheSize=240m -XX:+UseComp

  • Java JVM调优五大技能详解

    目录 1.什么时候需要JVM调优 2.JVM调优一般调什么 3.JVM调优基本步骤 3.1添加GC日志相关的参数 3.2添加内存溢出与Full gc前快照输出参数 3.3通过日志确定问题 3.3.1堆内存不足 3.3.2频繁Full gc 4.监控工具 4.1使用jstat 统计gc相关信息 4.2使用jmap命令查某时刻的JVM堆信息 5.常用的调优工具有哪些? 总结 1.什么时候需要JVM调优 应用的响应慢.CPU占用高 应用吞吐量小,占用内存空间过大 这些表象一般伴随着频繁的垃圾回收,或者

  • JVM性能调优实现原理及配置

    1.JVM内存模型 总结:可以发现最明显的一个变化是元空间从虚拟机转移到了本地内存.默认情况下,元数据空间大小仅受限于本地内存, 这意味着以后不会因为永久代大小不够而抛出OOM异常了. jdk1.8以前,HotSpot VM将class和类的jar包数据存储在PermGen里, PermGen大小是固定的,而且项目之间无法公用公有的class,所以很容易碰到OOM异常.改成MateSpace后, 各个项目会共享同样的class空间.比如多个项目都引用了apache-common包, 在MateS

  • jvm调优的几种场景(小结)

    目录 一.cpu占用过高 (1)用top命令查看cpu占用情况 (2)用top -Hp命令查看线程的情况 (3)把线程号转换为16进制 (4)用jstack工具查看线程栈情况 二.死锁 三.内存泄漏 四.总结 假定你已经了解了运行时的数据区域和常用的垃圾回收算法,也了解了Hotspot支持的垃圾回收器. 一.cpu占用过高 cpu占用过高要分情况讨论,是不是业务上在搞活动,突然有大批的流量进来,而且活动结束后cpu占用率就下降了,如果是这种情况其实可以不用太关心,因为请求越多,需要处理的线程数越

  • eclipse修改jvm参数调优方法(2种)

    本文介绍了eclipse修改jvm参数调优方法(2种),分享给大家,具体如下: 一般在不对eclipse进行相关设置的时候,使用eclipse总是会觉得启动好慢,用起来好卡,其实只要对eclipse的相关参数进行一些配置,就会有很大的改善. 有两种方法: 1.打开eclipse配置文件eclipse.ini,更改把-Xmx(其数值代表jvm可以使用的最大内存数) 2.  运行java程序时,选择run->run configuration->arguments,输入-Xms100M -Xmx8

  • JProfiler11使用教程之JVM调优问题小结

    安装JProfiler jprofiler_windows-x64_11_0_2 链接: https://pan.baidu.com/s/1EWxW5VT100D1v_HVvKYGqQ?pwd=qif5 提取码: qif5 JProfiler11破解 然后打开破解机器 KeyGen.exe 链接: https://pan.baidu.com/s/13MX6iLFtcmerdGovYjOh4g?pwd=cx7e 提取码: cx7e 配置本地监控 我们启动一个本地项目weblogic,Jboss,t

  • 优化Java虚拟机总结(jvm调优)

    堆设置 -Xmx3550m:设置JVM最大堆内存为3550M. -Xms3550m:设置JVM初始堆内存为3550M.此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存. -Xss128k:设置每个线程的栈大小.JDK5.0以后每个线程栈大小为1M,之前每个线程栈大小为256K.应当根据应用的线程所需内存大小进行调整.在相同物理内存下,减小这个值能生成更多的线程.但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右. -Xmn2g:设置堆

  • 数据库SQL调优的几种方式汇总

    目录 char  vs varchar 开启慢查询日志来定位查询慢的语句 合理使用关键字 优化查询缓存 适当使用索引 分割数据表 非规范化的方式 总结 最近在复习SQL调优,总结了下主要有以下几种方式: char  vs varchar 1.如果文本字段始终是固定长度的(例如,US 邮编,其始终具有“XXXXX-XXXX”形式的规范表示),那么推荐使用char.varchar 类型的长度是可变的,而 char 类型是一个定长的字段,以 char(10) 为例,不管真实的存储内容多大或者是占了多少

  • Jvm调优和SpringBoot项目优化的详细教程

    一.Jvm调优. 参考文章 1.先看一下未设置JVM参数的情况,默认情况下,没有设置任何Jvm参数. idea中安装VisualVM监控jvm的图文教程 2.设置Jvm参数. 配置参数: 关于这些设置的JVM参数是什么意思,参考Jvm调优. -XX:MetaspaceSize=128m (元空间默认大小) -XX:MaxMetaspaceSize=128m (元空间最大大小) -Xms1024m (堆最大大小) -Xmx1024m (堆默认大小) -Xmn256m (新生代大小) -Xss256

  • JVM调优OutOfMemoryError异常分析

    目录 1.Java 堆溢出 1.1 设置JVM参数 1.2 测试代码 1.3 运行OOM日志 2.Java栈.本地方法栈溢出 2.1 设置JVM参数 2.2 测试代码 2.3 运行OOM日志 2.4 Java虚拟机OOM异常 3.Java 运行常量池溢出 3.1 设置JVM参数-注意区分jdk版本 3.2 测试代码 3.3 运行OOM日志 4.Java 方法区溢出-jdk8 4.1 设置JVM参数 4.2 测试代码 4.3 运行OOM日志 5.本机直接内存溢出 5.1 设置JVM参数 5.2 测

随机推荐