python使用opencv切割图片白边

本文实例为大家分享了python使用opencv切割图片白边的具体代码,可以横切和竖切,供大家参考,具体内容如下

废话不多说直接上码,分享使人进步:

from PIL import Image
from itertools import groupby
import cv2
import datetime
import os

# from core.rabbitmq import MessageQueue

THRESHOLD_VALUE = 230  # 二值化时的阈值
PRETREATMENT_FILE = 'hq'  # 横切时临时保存的文件夹
W = 540  # 最小宽度
H = 960  # 最小高度

class Pretreatment(object):
    __doc__ = "图片横向切割"

    def __init__(self, path, save_path, min_size=960):
        self.x = 0
        self.y = 0
        self.img_section = []
        self.continuity_position = []
        self.path = path
        self.save_path = save_path
        self.img_obj = None
        self.min_size = min_size
        self.mkdir(self.save_path)
        self.file_name = self.path.split('/')[-1]

    def get_continuity_position_new(self):
        img = cv2.imread(self.path)
        gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, thresh1 = cv2.threshold(gray_image, THRESHOLD_VALUE, 255, cv2.THRESH_BINARY)

        width = img.shape[1]
        height = img.shape[0]
        self.x = width
        self.y = height
        for i in range(0, height):
            if thresh1[i].sum() != 255 * width:
                self.continuity_position.append(i)

    def filter_rule(self):
        if self.y < self.min_size:
            return True

    def mkdir(self, path):
        if not os.path.exists(path):
            os.makedirs(path)

    def get_section(self):
        # 获取区间
        for k, g in groupby(enumerate(self.continuity_position), lambda x: x[1] - x[0]):
            l1 = [j for i, j in g]  # 连续数字的列表
            if len(l1) > 1:
                self.img_section.append([min(l1), max(l1)])

    def split_img(self):
        print(self.img_section)
        for k, s in enumerate(self.img_section):
            if s:
                if not self.img_obj:
                    self.img_obj = Image.open(self.path)

                if self.x < W:
                    return
                if s[1] - s[0] < H:
                    return
                cropped = self.img_obj.crop((0, s[0], self.x, s[1]))  # (left, upper, right, lower)
                self.mkdir(os.path.join(self.save_path, PRETREATMENT_FILE))
                cropped.save(os.path.join(self.save_path, PRETREATMENT_FILE, f"hq_{k}_{self.file_name}"))

    def remove_raw_data(self):
        os.remove(self.path)

    def main(self):
        # v2
        try:
            self.get_continuity_position_new()
            self.filter_rule()
            self.get_section()
            self.split_img()
        except Exception as e:
            print(self.file_name)
            print(e)
        finally:
            if self.img_obj:
                self.img_obj.close()

class Longitudinal(Pretreatment):
    def get_continuity_position_new(self):
        print(self.path)
        img = cv2.imread(self.path)
        gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, thresh1 = cv2.threshold(gray_image, THRESHOLD_VALUE, 255, cv2.THRESH_BINARY)

        width = img.shape[1]
        height = img.shape[0]
        print(width, height)
        self.x = width
        self.y = height
        for i in range(0, width):
            if thresh1[:, i].sum() != 255 * height:
                self.continuity_position.append(i)

    def split_img(self):
        print(self.img_section)
        for k, s in enumerate(self.img_section):
            if s:
                if not self.img_obj:
                    self.img_obj = Image.open(self.path)
                if self.y < H:
                    return
                if s[1] - s[0] < W:
                    return
                cropped = self.img_obj.crop((s[0], 0, s[1], self.y))  # (left, upper, right, lower)
                cropped.save(os.path.join(self.save_path, f"{k}_{self.file_name}"))

def main(path, save_path):
    starttime = datetime.datetime.now()
    a = Pretreatment(path=path, save_path=save_path)
    a.main()
    for root, dirs, files in os.walk(os.path.join(save_path, PRETREATMENT_FILE)):
        for i in files:
            b = Longitudinal(path=os.path.join(save_path, PRETREATMENT_FILE, i), save_path=save_path)
            b.main()
            os.remove(os.path.join(save_path, PRETREATMENT_FILE, i))
    endtime = datetime.datetime.now()
    print(f'耗时:{(endtime - starttime)}')

if __name__ == '__main__':
    path = '你图片存放的路径'
    save_path = '要保存的路径'
    for _, _, files in os.walk(path):
        for i in files:
            main(path=os.path.join(path, i), save_path=save_path)
    os.rmdir(os.path.join(save_path, PRETREATMENT_FILE))

原始图片:

结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python实现对任意大小图片均匀切割的示例

    改代码是在windows 系统下 打开路径和保存路径换成自己的就可以啦~ import numpy as np import matplotlib import os def img_seg(dir): files = os.listdir(dir) for file in files: a, b = os.path.splitext(file) img = Image.open(os.path.join(dir + "\\" + file)) hight, width = img.s

  • Python切割图片成九宫格的示例代码

    这篇文字讲述如何使用Python把一张完整的大图切割成9份小图片,制作朋友圈九宫格图文分享. 原图如下: 我们想要利用这张图制作高逼格的九宫格朋友圈分享. 达到类似于这样的效果: 实现原理非常简单,那就是利用PIL库对原图不断画小区域然后切下来存储成新的小图片. 假设每一个格子的宽和高分别是w.h,那么第row行(从0开始计数),第col列(从0开始计数)的格子左上角坐标和右下角坐标分别是(col * w, row * h),(col * w + w, r * h + h). code snip

  • python3 实现对图片进行局部切割的方法

    先拿个图片举例子,比如说截取途中方框内的图片: # 导入相关的库 from PIL import Image # 打开一张图 img = Image.open('test.jpg') # 图片尺寸 img_size = img.size h = img_size[1] # 图片高度 w = img_size[0] # 图片宽度 x = 0.25 * w y = 0.16 * h w = 0.5 * w h = 0.2 * h # 开始截取 region = img.crop((x, y, x +

  • python切割图片的示例

    这个小程序可以自己设定行数和列数进行图片切割 import os from PIL import Image def splitimage(src, rownum, colnum, dstpath): img = Image.open(src) w, h = img.size if rownum <= h and colnum <= w: print('Original image info: %sx%s, %s, %s' % (w, h, img.format, img.mode)) pri

  • python3 实现验证码图片切割的方法

    切割前图片 切割后四个图片 代码 #coding:utf8 import os from PIL import Image,ImageDraw,ImageFile import numpy import pytesseract import cv2 import imagehash import collections class pictureIdenti: #rownum:切割行数:colnum:切割列数:dstpath:图片文件路径:img_name:要切割的图片文件 def spliti

  • python使用opencv切割图片白边

    本文实例为大家分享了python使用opencv切割图片白边的具体代码,可以横切和竖切,供大家参考,具体内容如下 废话不多说直接上码,分享使人进步: from PIL import Image from itertools import groupby import cv2 import datetime import os # from core.rabbitmq import MessageQueue THRESHOLD_VALUE = 230 # 二值化时的阈值 PRETREATMENT_

  • python 基于opencv去除图片阴影

    一.前言 如果你自己打印过东西,应该有过这种经历.如果用自己拍的图片,在手机上看感觉还是清晰可见,但是一打印出来就是漆黑一片.比如下面这两张图片: 因为左边的图片有大片阴影,所以打印出来的图片不堪入目(因为打印要3毛钱,所以第二张图片只是我用程序模拟的效果). 那有什么办法可以解决吗?答案是肯定的,今天我们就来探讨几个去除阴影的方法. 二.如何去除阴影? 首先为了方便处理,我们通常会对图片进行灰度转换(即将图片转换成只有一个图层的灰色图像). 然后我们分析一下,在上面的图片中有三个主色调,分别是

  • 浅谈Python实现opencv之图片色素的数值运算和逻辑运算

    数值运算 代码: # -*- coding=GBK -*- import cv2 as cv # 数值运算:加减乘除 def shu_image(src11, src22): src = cv.add(src11, src22) # 加 : 图像对应像素值相加,> 255 时取255 cv.namedWindow("add",0) cv.resizeWindow("add", 300, 300) # 设置播放窗口长和宽 cv.imshow("add&

  • python使用opencv读取图片的实例

    安装好环境后,开始了第一个Hello word 例子,如何读取图片,保存图品 import cv2 import numpy as np import matplotlib.pyplot as plt #读取图片代码 img = cv2.imread('test.jpg',cv2.IMREAD_GRAYSCALE) #IMREAD_COLOR = 1 #IMREAD_UNCHANGED = -1 #展示图片 cv2.imshow('image',img) cv2.waitKey(0) cv2.d

  • python通过opencv实现图片裁剪原理解析

    这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 图像裁剪的基本概念 : 图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪.例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除. 在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分

  • python中opencv实现图片文本倾斜校正

    本项目为python项目需要安装python及python的opencv模块:opencv_python-4.0.1-cp37-cp37m-win32.whl 和 python的矩阵运算模块:numpy. 1.第一步,安装python3.7,具体安装步骤略. 2.第二步,使用pip安装python的矩阵运算模块:numpy. python -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose

  • Python通过OpenCV的findContours获取轮廓并切割实例

    1 获取轮廓 OpenCV2获取轮廓主要是用cv2.findContours import numpy as np import cv2 im = cv2.imread('test.jpg') imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(imgray,127,255,0) image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_T

  • Python实现批量读取图片并存入mongodb数据库的方法示例

    本文实例讲述了Python实现批量读取图片并存入mongodb数据库的方法.分享给大家供大家参考,具体如下: 我的图片放在E:\image\中,然后使用python将图片读取然后,显示一张,存入取一张(可以注释掉显示图片的语句),通过Gridfs的方式存入图片.代码如下: # --* coding=utf-8 *-- from cStringIO import StringIO from pymongo import MongoClient import gridfs import os imp

  • Python Opencv实现图片切割处理

    本文实例为大家分享了Python Opencv实现图片的切割处理,供大家参考,具体内容如下 Opencv对图片的切割: 方法一: import os from PIL import Image def splitimage(src, rownum, colnum, dstpath):     img = Image.open(src)     w, h = img.size     if rownum <= h and colnum <= w:         print('Original

  • Python中OpenCV实现简单车牌字符切割

    在Jupyter Notebook上使用Python+opencv实现如下简单车牌字符切割.关于opencv库的安装可以参考:Python下opencv库的安装过程与一些问题汇总. 1.实现代码 import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image #读取原图片 image1=cv2.imread("123456.jpg") cv2.imshow("image1&

随机推荐