Java时间复杂度、空间复杂度的深入详解

目录
  • 算法效率
  • 时间复杂度
    • 什么是时间复杂度
    • 推导大 O 阶的方法
    • 算法情况
    • 计算冒泡排序的时间复杂度
    • 计算二分查找的时间复杂度
    • 计算阶乘递归的时间复杂度
    • 计算斐波那契递归的时间复杂度
  • 空间复杂度
    • 计算冒泡排序的空间复杂度
    • 计算斐波那契数列的空间复杂度(非递归)
    • 计算阶乘递归Factorial的时间复杂度
  • 总结

算法效率

在使用当中,算法效率分为两种,一是时间效率(时间复杂度),二是空间效率(空间复杂度)。时间复杂度是指程序运行的速度。空间复杂度是指一个算法所需要的额外的空间。

时间复杂度

什么是时间复杂度

计算程序运行的时间不能拿简单的时间来计算,因为不同处理器处理数据的能力是不一样的。所以只算一个大概的次数就行了,俨然就是算法中的基本操作的执行次数。用大O的渐进法来表示

例:计算 func1 的基本操作执行了几次

void func1(int N){
    int count = 0;
    for (int i = 0; i < N ; i++) {
        for (int j = 0; j < N ; j++) {
            count++;
        }
    }
    for (int k = 0; k < 2 * N ; k++) {
        count++;
    }
    int M = 10;
    while ((M--) > 0) {
        count++;
    }
    System.out.println(count);
}

func1 的基本执行次数是:F(N) = N^2 + 2*N + 10

推导大 O 阶的方法

1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

所以使用大 O 的渐进法表示之后,func1 的时间复杂度就是:O(N^2)

算法情况

因为当我们用算法计算的时候,会有最好情况和最坏情况和平均情况。我们常说的时间复杂度在 O(N) 这里的时间复杂度就是最坏情况。

最好情况就是最小的运行次数。

举例一:

void func2(int N){
    int count = 0;
    for (int k = 0; k < 2 * N ; k++) {
        count++;
    }
    int M = 10;
    while ((M--) > 0) {
        count++;
    }
    System.out.println(count);
}

这里的结果是 O(N) 因为根据时间复杂度的计算方法,去除常数,所以 2*N 就是 N 。M 是 10 也可以忽略掉。

举例二:

void func3(int N, int M) {
    int count = 0;
    for (int k = 0; k < M; k++) {
        count++;
    }
    for (int k = 0; k < N ; k++) {
        count++;
    }
    System.out.println(count);
}

这里的时间复杂度是 O(M+N) 因为 M 和 N 的值是未知的,所以是 O(M+N)

举例三:

void func4(int N) {
    int count = 0;
    for (int k = 0; k < 100; k++) {
        count++;
    }
    System.out.println(count);
}

这个的时间复杂度是 O(1) 因为循环里面是常数,所以根据大 O 渐进法,结果就是 O(1)

计算冒泡排序的时间复杂度

public static void bubbleSort(int[] arr){
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if(arr[j] > arr[j+1]){
                int tmp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}

因为冒泡排序的特殊性,可能一次就排好了,也可能得一直排到最后,所以就有了最好情况和最坏情况。

最好情况:就是比较一次,就是 O(N)

最坏情况:一直排到最后,就是 O(N^2)

计算二分查找的时间复杂度

int binarySearch(int[] array, int value) {
    int begin = 0;
    int end = array.length - 1;
    while (begin <= end) {
        int mid = begin + ((end-begin) / 2);
        if (array[mid] < value)
            begin = mid + 1;
        else if (array[mid] > value)
            end = mid - 1;
        else
            return mid;
    }
    return -1;
}

因为二分查找是一半一半的找,所以每次查找之后都会把查找范围减半,比如说在一个 1 - 8 的有序数组里面查找 8 也就是查找最坏情况。图示如下:

如图,在数组当中完成二分查找需要 log2n - 1 次也就是时间复杂度是 log2n (就是 log 以 2 为底 n 的对数)

计算阶乘递归的时间复杂度

long factorial(int N) {
	return N < 2 ? N : factorial(N-1) * N;
}

计算递归的时间复杂度:递归的次数 * 每次递归执行的次数。

所以这次递归的时候,基本操作递归了 N 次,所以时间复杂度就是 O(N)

计算斐波那契递归的时间复杂度

int fibonacci(int N) {
	return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

假设 N 是 5 我们来展开求

如图:每次计算都会计算下一层,但是每次都是一边少,一边多。所以就可以直接按照每边一样来计算。如下图:

所以就有公式可以计算出每次计算的次数,就是:2 ^ (n - 1) ,所以计算的结果就是:2^\0 + 2^1 + 2^2 + 2^3……2^(n-1) = 2^n+1 所以按照大 O 渐进法来算,结果就是:2^n 。

所以斐波那契数列的时间复杂度就是:2^n 。

空间复杂度

空间复杂度衡量的是一个算法在运行过程当中占用的额外存储空间的大小,因为没必要按照字节来算,而是算变量的个数。也是用大 O 渐进法表示。

计算冒泡排序的空间复杂度

public static void bubbleSort(int[] arr){
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if(arr[j] > arr[j+1]){
                int tmp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}

因为冒泡排序的变量并没有变化,使用的是额外空间是常数,所以空间复杂度是 O(1) 。

计算斐波那契数列的空间复杂度(非递归)

int[] fibonacci(int n) {
    long[] fibArray = new long[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; i++) {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

因为这里的斐波那契数列开辟了 n 个额外空间,所以空间复杂度为 O(n) 。

计算阶乘递归Factorial的时间复杂度

int factorial(int N) {
	return N < 2 ? N : factorial(N-1)*N;
}

因为是递归,每次递归都会开辟栈帧,每个栈帧占用常数个空间,所以空间复杂度就是 O(N) 。

总结

到此这篇关于Java时间复杂度、空间复杂度的文章就介绍到这了,更多相关Java时间复杂度、空间复杂度内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java算法之时间复杂度和空间复杂度的概念和计算

    一.算法效率 算法效率分析分为两种:第一种是时间效率,第二种是空间效率.时间效率被称为时间复杂度,而空间效率被称作空间复杂度. 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间. 在计算机发展的早期,计算机的存储容量很小.所以对空间复杂度很是在乎.但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度.所以我们如今已经不需要再特别关注一个算法的空间复杂度.因为现在的内存不像以前那么贵,所以经常听到过牺牲空间来换取时间的说法 二.时间复杂度 2.1

  • 从零开始学Java之关系运算符

    目录 引言 定义 实例 注意点 举例 总结 引言 ♀ 小AD:明哥,我怎么就那么讨厌刺客,凭什么我就打不过他们,每次把我秒了. ♂ 明世隐:这是因为英雄克制,刺客就是用来对方脆皮的. ♀ 小AD:所以这个叫克制关系? ♂ 明世隐:对,但是刺客却害怕战士型英雄. ♀ 小AD:战士相对被肉克制?肉被射手克制? ♂ 明世隐:差球不多!是一种克制关系,当然不是绝对的,如果段位相差过多,就当我没说.那你跟我什么关系? ♀ 小AD:师徒?大腿? ♂ 明世隐:总之无形之中是不是有一种关系的存在 ? ♀ 小AD

  • Go&java算法之最大数示例详解

    目录 最大数 方法一:排序(java) 方法一:排序(go) 最大数 给定一组非负整数 nums,重新排列每个数的顺序(每个数不可拆分)使之组成一个最大的整数. 注意:输出结果可能非常大,所以你需要返回一个字符串而不是整数. 示例 1: 输入:nums = [10,2] 输出:"210" 示例 2: 输入:nums = [3,30,34,5,9] 输出:"9534330" 提示: 1 <= nums.length <= 100 0 <= nums[

  • Java数据结构之KMP算法详解以及代码实现

    目录 暴力匹配算法(Brute-Force,BF) 概念和原理 next数组 KMP匹配 KMP全匹配 总结 我们此前学了前缀树Trie的实现原理以及Java代码的实现.Trie树很好,但是它只能基于前缀匹配实现功能.但是如果我们的需求是:一个已知字符串中查找子串,并且子串并不一定符合前缀匹配,那么此时Trie树就无能为力了. 实际上这种字符串匹配的需求,在开发中非常常见,例如判断一个字符串是否包括某些子串,然后进行分别的处理. 暴力匹配算法(Brute-Force,BF) 这是最常见的算法字符

  • Java基础之代码死循环详解

    一.前言 代码死循环这个话题,个人觉得还是挺有趣的.因为只要是开发人员,必定会踩过这个坑.如果真的没踩过,只能说明你代码写少了,或者是真正的大神. 尽管很多时候,我们在极力避免这类问题的发生,但很多时候,死循环却悄咪咪的来了,坑你于无形之中.我敢保证,如果你读完这篇文章,一定会对代码死循环有一些新的认识,学到一些非常实用的经验,少走一些弯路. 二.死循环的危害 我们先来一起了解一下,代码死循环到底有哪些危害? 程序进入假死状态, 当某个请求导致的死循环,该请求将会在很大的一段时间内,都无法获取接

  • java数组算法例题代码详解(冒泡排序,选择排序,找最大值、最小值,添加、删除元素等)

    数组算法例题 1.数组逆序 第一个和最后一个互换,第二个和倒数第二个互换,就相当于把数组想下图一样,进行对折互换,如果数组个数为奇数,则中间保持不变其余元素互换即可 import java.util.Arrays; class Demo12 { public static void main (String[] args) { int[] arr = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; System.out.println(Arrays.toString(arr));

  • java 数据结构并查集详解

    目录 一.概述 二.实现 2.1 Quick Find实现 2.2 Quick Union实现 三.优化 3.1基于size的优化 3.2基于rank优化 3.2.1路径压缩(Path Compression ) 3.2.2路径分裂(Path Spliting) 3.2.3路径减半(Path Halving) 一.概述 并查集:一种树型数据结构,用于解决一些不相交集合的合并及查询问题.例如:有n个村庄,查询2个村庄之间是否有连接的路,连接2个村庄 两大核心: 查找 (Find) : 查找元素所在

  • Java实现无向图的示例详解

    目录 基本概念 图的定义 无向图的定义 无向图的 API 无向图的实现方式 邻接矩阵 边的数组 邻接表数组 无向图的遍历 深度优先搜索 广度优先搜索 后记 基本概念 图的定义 一个图是由点集V={vi} 和 VV 中元素的无序对的一个集合E={ek} 所构成的二元组,记为G=(V,E),V中的元素vi叫做顶点,E中的元素 ek叫做边. 对于V中的两个点 u,v,如果边(u,v) 属于E,则称 u,v两点相邻,u,v称为边(u,v)的端点. 我们可以用m(G)=|E| 表示图G中的边数,用n(G)

  • Java Stream流语法示例详解

    目录 如何使用Stream? Stream的操作分类 1.创建流 2.操作流 1)过滤 2)映射 3)匹配 4)组合 3.转换流 如何使用Stream? 聚合操作是Java 8针对集合类,使编程更为便利的方式,可以与Lambda表达式一起使用,达到更加简洁的目的. 前面例子中,对聚合操作的使用可以归结为3个部分: 1)  创建Stream:通过stream()方法,取得集合对象的数据集. 2)  Intermediate:通过一系列中间(Intermediate)方法,对数据集进行过滤.检索等数

  • Java数据结构之堆(优先队列)详解

    目录 堆的性质 堆的分类 堆的向下调整 堆的建立 堆得向上调整 堆的常用操作 入队列 出队列 获取队首元素 TopK 问题 例子 数组排序 堆的性质 堆逻辑上是一棵完全二叉树,堆物理上是保存在数组中 . 总结:一颗完全二叉树以层序遍历方式放入数组中存储,这种方式的主要用法就是堆的表示. 并且 如果已知父亲(parent) 的下标, 则: 左孩子(left) 下标 = 2 * parent + 1; 右孩子(right) 下标 = 2 * parent + 2; 已知孩子(不区分左右)(child

  • Java VisualVM监控远程JVM(详解)

    我们经常需要对我们的开发的软件做各种测试, 软件对系统资源的使用情况更是不可少, 目前有多个监控工具, 相比JProfiler对系统资源尤其是内存的消耗是非常庞大,JDK1.6开始自带的VisualVM就是不错的监控工具. 这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到一个比较直观的界面 从左边Applications树中可以知道,不光可以监控本地JVM运行情况, 还可以监控远程机器上的JVM运行情况. 本地监控:只要打开某个JAVA程序就会自

  • 基于java servlet过滤器和监听器(详解)

    1 过滤器 1.过滤器是什么? servlet规范当中定义的一种特殊的组件,用于拦截容器的调用. 注:容器收到请求之后,如果有过滤器,会先调用过滤器,然后在调用servlet. 2.如何写一个过滤器? 1.写一个java类,实现Filter接口; 2.在接口方法中实现拦截方法; 3.配置过滤器(web.xml); 3.配置初始化参数 1.配置初始化参数.(init-param) 2.通过filterconfig提供的getinitparamenter方法读取初始化的值. 4.优先级: 当有多个过

随机推荐