人工智能学习Pytorch数据集分割及动量示例详解

目录
  • 1.数据集分割
  • 2.正则化
  • 3.动量和学习率衰减

1.数据集分割

通过datasets可以直接分别获取训练集和测试集。

通常我们会将训练集进行分割,通过torch.utils.data.random_split方法。

所有的数据都需要通过torch.util.data.DataLoader进行加载,才可以得到可以使用的数据集。

具体代码如下:

2.

2.正则化

PyTorch中的正则化和机器学习中的一样,不过设置方式不一样。

直接在优化器中,设置weight_decay即可。优化器中,默认的是L2范式,因此填入的参数就是lambda。想要使用L1范式的话,需要手动写出代码。

3.动量和学习率衰减

动量的设置可以直接在优化器中完成。通过momentum参数设置。

学习率的调整通过torch.optim.lr_scheduler中的ReduceLROnPlateau,StepLR实现。

ReduceLROnPlateau是自动检测损失值,并衰减学习率。

StepLR需要手动设置衰减的参数。

以上就是人工智能学习Pytorch数据集分割及动量示例详解的详细内容,更多关于pytorch数据集分割及动量的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python人工智能深度学习CNN

    目录 1.CNN概述 2.卷积层 3.池化层 4.全连层 1.CNN概述 CNN的整体思想,就是对图片进行下采样,让一个函数只学一个图的一部分,这样便得到少但是更有效的特征,最后通过全连接神经网络对结果进行输出. 整体架构如下: 输入图片 →卷积:得到特征图(激活图) →ReLU:去除负值 →池化:缩小数据量同时保留最有效特征 (以上步骤可多次进行) →输入全连接神经网络 2.卷积层 CNN-Convolution 卷积核(或者被称为kernel, filter, neuron)是要被学出来的,

  • 人工智能学习Pytorch张量数据类型示例详解

    目录 1.python 和 pytorch的数据类型区别 2.张量 ①一维张量 ②二维张量 ③3维张量 ④4维张量 1.python 和 pytorch的数据类型区别 在PyTorch中无法展示字符串,因此表达字符串,需要将其转换成编码的类型,比如one_hot,word2vec等. 2.张量 在python中,会有标量,向量,矩阵等的区分.但在PyTorch中,这些统称为张量tensor,只是维度不同而已. 标量就是0维张量,只有一个数字,没有维度. 向量就是1维张量,是有顺序的数字,但没有"

  • 人工智能学习Pytorch梯度下降优化示例详解

    目录 一.激活函数 1.Sigmoid函数 2.Tanh函数 3.ReLU函数 二.损失函数及求导 1.autograd.grad 2.loss.backward() 3.softmax及其求导 三.链式法则 1.单层感知机梯度 2. 多输出感知机梯度 3. 中间有隐藏层的求导 4.多层感知机的反向传播 四.优化举例 一.激活函数 1.Sigmoid函数 函数图像以及表达式如下: 通过该函数,可以将输入的负无穷到正无穷的输入压缩到0-1之间.在x=0的时候,输出0.5 通过PyTorch实现方式

  • 人工智能学习Pytorch进阶操作教程

    目录 一.合并与分割 1.cat拼接 2.stack堆叠 3.拆分 ①Split按长度拆分 ②Chunk按数量拆分 二.基本运算 1.加减乘除 2.矩阵相乘 3.次方计算 4. clamp 三.属性统计 1.求范数 2.求极值.求和.累乘 3. dim和keepdim 4.topk和kthvalue 5.比较运算 6.高阶操作 ①where ②gather 一.合并与分割 1.cat拼接 直接按照指定的dim维度进行合并,要求除了所需要合并的维度之外,其他的维度需要是一样的 2.stack堆叠

  • 人工智能学习Pytorch教程Tensor基本操作示例详解

    目录 一.tensor的创建 1.使用tensor 2.使用Tensor 3.随机初始化 4.其他数据生成 ①torch.full ②torch.arange ③linspace和logspace ④ones, zeros, eye ⑤torch.randperm 二.tensor的索引与切片 1.索引与切片使用方法 ①index_select ②... ③mask 三.tensor维度的变换 1.维度变换 ①torch.view ②squeeze/unsqueeze ③expand,repea

  • 人工智能学习Pytorch数据集分割及动量示例详解

    目录 1.数据集分割 2.正则化 3.动量和学习率衰减 1.数据集分割 通过datasets可以直接分别获取训练集和测试集. 通常我们会将训练集进行分割,通过torch.utils.data.random_split方法. 所有的数据都需要通过torch.util.data.DataLoader进行加载,才可以得到可以使用的数据集. 具体代码如下: 2. 2.正则化 PyTorch中的正则化和机器学习中的一样,不过设置方式不一样. 直接在优化器中,设置weight_decay即可.优化器中,默认

  • 人工智能学习pyTorch的ResNet残差模块示例详解

    目录 1.定义ResNet残差模块 ①各层的定义 ②前向传播 2.ResNet18的实现 ①各层的定义 ②前向传播 3.测试ResNet18 1.定义ResNet残差模块 一个block中,有两个卷积层,之后的输出还要和输入进行相加.因此一个block的前向流程如下: 输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out 中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些. ①各层的定义 ②前向传播 在前向传播中输入x,过

  • TensorFlow人工智能学习张量及高阶操作示例详解

    目录 一.张量裁剪 1.tf.maximum/minimum/clip_by_value() 2.tf.clip_by_norm() 二.张量排序 1.tf.sort/argsort() 2.tf.math.topk() 三.TensorFlow高阶操作 1.tf.where() 2.tf.scatter_nd() 3.tf.meshgrid() 一.张量裁剪 1.tf.maximum/minimum/clip_by_value() 该方法按数值裁剪,传入tensor和阈值,maximum是把数

  • Python计算图片数据集的均值方差示例详解

    目录 前言 Python批量reshape图片 参考 计算数据集均值和方差 前言 在做图像处理的时候,有时候需要得到整个数据集的均值方差数值,以下代码可以解决你的烦恼: (做这个之前一定保证所有的图片都是统一尺寸,不然算出来不对,我的代码里设计的是512*512,可以自己调整,同一尺寸的代码我也有: Python批量reshape图片 # -*- coding: utf-8 -*- """ Created on Thu Aug 23 16:06:35 2018 @author

  • Go语言学习教程之结构体的示例详解

    目录 前言 可导出的标识符 嵌入字段 提升 标签 结构体与JSON相互转换 结构体转JSON JSON转结构体 练习代码步骤 前言 结构体是一个序列,包含一些被命名的元素,这些被命名的元素称为字段(field),每个字段有一个名字和一个类型. 结构体用得比较多的地方是声明与数据库交互时需要用到的Model类型,以及与JSON数据进行相互转换.(当然,项目中任何需要多种数据结构组合在一起使用的地方,都可以选择用结构体) 代码段1:声明一个待办事项的Model类型: type Todo struct

  • Python深度学习实战PyQt5布局管理项目示例详解

    目录 1. 从绝对定位到布局管理 1.1 什么是布局管理 1.2 Qt 中的布局管理方法 2. 水平布局(Horizontal Layout) 3. 垂直布局(Vertical Layout) 4. 栅格布局(Grid Layout) 5. 表格布局(Form Layout) 6. 嵌套布局 7. 容器布局 布局管理就是管理图形窗口中各个部件的位置和排列.图形窗口中的大量部件也需要通过布局管理,对部件进行整理分组.排列定位,才能使界面整齐有序.美观大方. 1. 从绝对定位到布局管理 1.1 什么

  • python学习笔记:字典的使用示例详解

    经典字典使用函数dict:通过其他映射(比如其他字典)或者(键,值)这样的序列对建立字典.当然dict成为函数不是十分确切,它本质是一种类型.如同list. 复制代码 代码如下: items=[('name','zhang'),('age',42)]d=dict(items)d['name'] len(d):返回项的数量d[k]:返回键k上面的值.d[k]=v:将k对应的值设置为k.del d[k]:删除字典中的这一项.k in d:检查d中是否含有键为k的项.注:只能查找键,不能查找值.简单的

  • 人工智能学习pyTorch自建数据集及可视化结果实现过程

    目录 一.自定义数据集 1.文件夹映射 2.图片对应标签 3.训练及测试数据分割 4.数据处理 二.ResNet处理 三.训练及可视化 1.数据集导入 2.测试函数 3.训练过程及可视化 一.自定义数据集 现有数据如下: 5个文件夹,每个文件夹是神奇宝贝的一种. 每个图片形状.大小.格式不一. 我们训练CNN的时候需要的是tensor类型的数据,因此需要将所有的图片进行下列转换: 1.对文件夹编号,进行映射,比如妙蛙种子文件夹编号0,皮卡丘编号1等. 2.对文件夹中所有图片,进行编号的对应,这个

  • Python人工智能学习PyTorch实现WGAN示例详解

    目录 1.GAN简述 2.生成器模块 3.判别器模块 4.数据生成模块 5.判别器训练 6.生成器训练 7.结果可视化 1.GAN简述 在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判别模型,用于判断样本是真还是假.但由于在GAN中,使用的JS散度去计算损失值,很容易导致梯度弥散的情况,从而无法进行梯度下降更新参数,于是在WGAN中,引入了Wasserstein Distance,使得训练变得稳定.本文中我们以服从高斯分布的数据作为样本. 2.生成器模块 这里从2维数据,最终生成2

  • TensorFlow人工智能学习数据合并分割统计示例详解

    目录 一.数据合并与分割 1.tf.concat() 2.tf.split() 3.tf.stack() 二.数据统计 1.tf.norm() 2.reduce_min/max/mean() 3.tf.argmax/argmin() 4.tf.equal() 5.tf.unique() 一.数据合并与分割 1.tf.concat() 填入两个tensor, 指定某维度,在指定的维度合并.除了合并的维度之外,其他的维度必须相等. 2.tf.split() 填入tensor,指定维度,指定分割的数量

随机推荐