python装饰器的特性原理详解

这篇文章主要介绍了python装饰器的特性原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

今天发现了装饰器的另一种用法,下面就先上代码:

data_list = []
def data_item(func):
  data_list.append(func)
  return func
@data_item
def foo():
  return 1
@data_item
def foo1():
  return 2
@data_item
def foo3():
  return 3
def max_item():
  result = max(i() for i in data_list)
  return result
if __name__ == '__main__':
  item = max_item()
  print(item)

代码很简单就是,定义三个foo开头的函数,每个foo函数输出不一样的数字,都通过装饰器data_item进行修饰,最后通过max_item函数,执行一系列逻辑获取结果。

这里有个容易被忽略的点,那就是装饰器实际是在执行 max_item()之前就执行了。
所以,如果你打印下data_list你会发现它是有值的。

[<function foo at 0x10bb05ea0>, <function foo1 at 0x10bb05d90>, <function foo3 at 0x10bb05f28>]

即列表里面已经有三个被装饰器修饰的函数了,然后在

max(i() for i in data_list)

的i()阶段这三个函数执行了,得到了结果(1,2,3),然后最后取它们的max值即3。

什么场景会用到呢,一般对于传入一个值然后多种处理方案,选择其中最佳方案的时候可以考虑使用这种方法。
emmm,装饰器还是挺有意思的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python装饰器练习题及答案

    这篇文章主要介绍了python装饰器练习题及答案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一:编写装饰器,为多个函数加上认证的功能(用户的账号密码) 要求登录成功一次,后续的函数都无需输入用户名和密码 FLAG=False#此时还未登录 全局变量 写这个步骤的意义在于:方便 知道已经登录成功了,就不再重复登录 def login(func):#为多个函数加上的认证功能 def inner(*args,**kwargs):#加上装饰器 gl

  • python 自定义装饰器实例详解

    本文实例讲述了python 自定义装饰器.分享给大家供大家参考,具体如下: 先看一个例子 def deco(func): print("before myfunc() called.") func() print("after myfunc() called.") return func @deco def myfunc(): print("myfunc() called.") # myfunc = deco(myfunc) # 与上面的@dec

  • python装饰器简介---这一篇也许就够了(推荐)

    Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序如虎添翼. 装饰器引入 初期及问题诞生 假如现在在一个公司,有A B C三个业务部门,还有S一个基础服务部门,目前呢,S部门提供了两个函数,供其他部门调用,函数如下: def f1(): print('f1 called') def f2(): print('f2 called') 在初期,其他部门这样调用是没有问题的,随着公司业务的发展,现在S部门需要对函数调用假如权限验证,如果有权限的话,才

  • python3 property装饰器实现原理与用法示例

    本文实例讲述了python3 property装饰器实现原理与用法.分享给大家供大家参考,具体如下: 学习python的同学,慢慢的都会接触到装饰器,装饰器在python里是功能强大的语法.装饰器配合python的魔法方法,能实现很多意想不到的功能.废话不多说,如果你已经掌握了闭包的原理,代码的逻辑还是可以看明白的,咱们直接进入正题. property的意义 @property把一个类的getter方法变成属性,如果还有setter方法,就在setter方法前面加上@method.setter.

  • python 一篇文章搞懂装饰器所有用法(建议收藏)

    01. 装饰器语法糖 如果你接触 Python 有一段时间了的话,想必你对 @ 符号一定不陌生了,没错 @ 符号就是装饰器的语法糖. 它放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上.和这个函数绑定在一起.在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为装饰函数 或 装饰器. 你要问我装饰器可以实现什么功能?我只能说你的脑洞有多大,装饰器就有多强大. 装饰器的使用方法很固定: 先定义一个装饰函数(帽子)(也可以

  • python中多个装饰器的执行顺序详解

    装饰器是程序开发中经常会用到的一个功能,也是python语言开发的基础知识,如果能够在程序中合理的使用装饰器,不仅可以提高开发效率,而且可以让写的代码看上去显的高大上^_^ 使用场景 可以用到装饰器的地方有很多,简单的举例如以下场景 引入日志 函数执行时间统计 执行函数前预备处理 执行函数后清理功能 权限校验等场景 缓存 今天讲一下python中装饰器的执行顺序,以两个装饰器为例. 装饰器代码如下: def wrapper_out1(func): print('--out11--') def i

  • python装饰器使用实例详解

    这篇文章主要介绍了python装饰器使用实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 python装饰器的作用就是在不想改变原函数代码的情况下,增加新的功能.主要应用了python闭包的概念,现在用1个小例子说明 import time def foo(): time.sleep(1) def bar(): time.sleep(2) def show_time(f): def inner(): start_time = time.t

  • Python装饰器限制函数运行时间超时则退出执行

    实际项目中会涉及到需要对有些函数的响应时间做一些限制,如果超时就退出函数的执行,停止等待. 可以利用python中的装饰器实现对函数执行时间的控制. python装饰器简单来说可以在不改变某个函数内部实现和原来调用方式的前提下对该函数增加一些附件的功能,提供了对该函数功能的扩展. 方法一. 使用 signal # coding=utf-8 import signal import time def set_timeout(num, callback): def wrap(func): def h

  • python装饰器的特性原理详解

    这篇文章主要介绍了python装饰器的特性原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 今天发现了装饰器的另一种用法,下面就先上代码: data_list = [] def data_item(func): data_list.append(func) return func @data_item def foo(): return 1 @data_item def foo1(): return 2 @data_item def fo

  • Python装饰器中@property使用详解

    目录 最初的声明方式 使用装饰器的声明方式 使用装饰器的调用过程 总结 最初的声明方式 在没有@property修饰的情况下,需要分别声明get.set.delete函数,然后初始化property类,将这些方法加载进property中 class C持有property的实例化对象x 对外表现出来C().x时,实际上是调用C()中的x(property类)中设置的fset,fget,fdel,分别对应getx,setx,delx C真正持有的x,是self._x被隐藏起来了 class C(o

  • JavaScript装饰器的实现原理详解

    目录 装饰器的常见作用 装饰类的属性 装饰类 注意 实例应用 最近在使用TS+Vue的开发模式,发现项目中大量使用了装饰器,看得我手足无措,今天特意研究一下实现原理,方便自己理解这块知识点. 装饰器的常见作用 装饰一个类的属性 装饰一个类 装饰器只能针对类和类的属性,不能直接作用于函数,因为存在函数提升. 下面我们针对这两种情况进行举例阐述. 装饰类的属性 function readonly(target, name, descriptor) { discriptor.writable = fa

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • Python Pytest装饰器@pytest.mark.parametrize详解

    Pytest中装饰器@pytest.mark.parametrize('参数名',list)可以实现测试用例参数化,类似DDT 如:@pytest.mark.parametrize('请求方式,接口地址,传参,预期结果',[('get','www.baidu.com','{"page":1}','{"code":0,"msg":"成功"})',('post','www.baidu.com','{"page"

  • Python JSON编解码方式原理详解

    这篇文章主要介绍了Python JSON编解码方式原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 概念 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写.在日常的工作中,应用范围极其广泛.这里就介绍python下它的两种编解码方法: 使用json函数 使用 JSON 函数需要导入 json 库:import json.函数含义: 源码解析: # coding= utf-8 #

  • Python学习之直方图均衡化原理详解

    目录 1.点算子 2.线性灰度变换 3.直方图均衡化 4.代码实战 1.点算子 点算子是两个像素灰度值间的映射关系,属于像素的逐点运算,相邻像素不参与运算.点算子是最简单的图像处理手段,如:亮度调整.对比度调整.颜色变换.直方图均衡化等等. 2.线性灰度变换 线性灰度变换表达为: 其中rk.sk分别为输入.输出点像素灰度值. ▲图2.1 线性灰度变换 当a>1时,输出图像像素灰度范围扩大,图像对比度增强,当a<1时反之.这是因为人眼不易区分相近的灰度值,因此若图像灰度值范围较小,观感上细节不够

  • python神经网络Batch Normalization底层原理详解

    目录 什么是Batch Normalization Batch Normalization的计算公式 Bn层的好处 为什么要引入γ和β变量 Bn层的代码实现 什么是Batch Normalization Batch Normalization是神经网络中常用的层,解决了很多深度学习中遇到的问题,我们一起来学习一哈. Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network T

  • python中多个装饰器的调用顺序详解

    前言 一般情况下,在函数中可以使用一个装饰器,但是有时也会有两个或两个以上的装饰器.多个装饰器装饰的顺序是从里到外(就近原则),而调用的顺序是从外到里(就远原则). 原代码 执行结果 装饰顺序 : 就近原则 被装饰的函数,组装装饰器时,是从下往上装饰 执行顺序 : 就远原则 装饰器调用时是从上往下调用 为了更好的理解,找到这段话: 被装饰的函数是一个妹子,装饰器是衣服."办事情"的时候得依次把外套.衬衣.内衣脱掉,事情办完了还要依次把内衣.衬衣.外套穿上.距离"妹子"

随机推荐