Pytorch 的损失函数Loss function使用详解

1.损失函数

损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一。另一个必不可少的要素是优化器。

损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等。

损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较)。

损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数。

我们先定义两个二维数组,然后用不同的损失函数计算其损失值。

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
sample = Variable(torch.ones(2,2))
a=torch.Tensor(2,2)
a[0,0]=0
a[0,1]=1
a[1,0]=2
a[1,1]=3
target = Variable (a)

sample 的值为:[[1,1],[1,1]]。

target 的值为:[[0,1],[2,3]]。

1 nn.L1Loss

L1Loss 计算方法很简单,取预测值和真实值的绝对误差的平均数即可。

criterion = nn.L1Loss()
loss = criterion(sample, target)
print(loss)

最后结果是:1。

它的计算逻辑是这样的:

先计算绝对差总和:|0-1|+|1-1|+|2-1|+|3-1|=4;

然后再平均:4/4=1。

2 nn.SmoothL1Loss

SmoothL1Loss 也叫作 Huber Loss,误差在 (-1,1) 上是平方损失,其他情况是 L1 损失。

criterion = nn.SmoothL1Loss()
loss = criterion(sample, target)
print(loss)

最后结果是:0.625。

3 nn.MSELoss

平方损失函数。其计算公式是预测值和真实值之间的平方和的平均数。

criterion = nn.MSELoss()
loss = criterion(sample, target)
print(loss)

最后结果是:1.5。

4 nn.CrossEntropyLoss

交叉熵损失函数

花了点时间才能看懂它。

首先,先看几个例子,

需要注意的是,target输入必须是 tensor long 类型(int64位)

import torch
# cross entropy loss
pred = np.array([[0.8, 2.0, 1.2]])
CELoss = torch.nn.CrossEntropyLoss()
for k in range(3):
  target = np.array([k])
  loss2 = CELoss(torch.from_numpy(pred), torch.from_numpy(target).long())
  print(loss2)

Output:

tensor(1.7599, dtype=torch.float64)
tensor(0.5599, dtype=torch.float64)
tensor(1.3599, dtype=torch.float64)

如果,改成pred = np.array([[0.8, 2.0, 2.0]]),输出,

tensor(2.0334, dtype=torch.float64)
tensor(0.8334, dtype=torch.float64)
tensor(0.8334, dtype=torch.float64)

后面两个输出一样。

先看它的公式,就明白怎么回事了:

(这个应该是有两个标准交叉熵组成了,后面一个算是预测错误的交叉熵?反正,数值会变大了)

使用 numpy来实现是这样的:

pred = np.array([[0.8, 2.0, 2.0]])
nClass = pred.shape[1]
target = np.array([0])

def labelEncoder(y):
  tmp = np.zeros(shape = (y.shape[0], nClass))
  for i in range(y.shape[0]):
    tmp[i][y[i]] = 1
  return tmp
def crossEntropy(pred, target):
  target = labelEncoder(target)
  pred = softmax(pred)
  H = -np.sum(target*np.log(pred))
  return H
H = crossEntropy(pred, target)

输出:

 2.0334282107562287

对上了!

再回头看看,公式

这里,就是class 就是索引,(调用 nn.CrossEntropyLoss需要注意),这里把Softmax求p 和 ylog(p)写在一起,一开始还没反应过来。

5.nn.BCELoss

二分类交叉熵的含义其实在交叉熵上面提过,就是把{y, 1-y}当做两项分布,计算出来的loss就比交叉熵大(也就是包含的信息更多了,因为包含了正类和负类的loss了)。

最后结果是:-13.8155。

6 nn.NLLLoss

负对数似然损失函数(Negative Log Likelihood)

在前面接上一个 LogSoftMax 层就等价于交叉熵损失了。注意这里的 xlabel 和上个交叉熵损失里的不一样,这里是经过 log 运算后的数值。这个损失函数一般也是用在图像识别模型上。

NLLLoss 的 输入 是一个对数概率向量和一个目标标签(不需要是one-hot编码形式的). 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 损失函数 nn.CrossEntropyLoss() 与 NLLLoss() 相同, 唯一的不同是它为我们去做 softmax.

Nn.NLLLoss 和 nn.CrossEntropyLoss 的功能是非常相似的!通常都是用在多分类模型中,实际应用中我们一般用 NLLLoss 比较多。

7 nn.NLLLoss2d

和上面类似,但是多了几个维度,一般用在图片上。

input, (N, C, H, W)

target, (N, H, W)

比如用全卷积网络做分类时,最后图片的每个点都会预测一个类别标签。

criterion = nn.NLLLoss2d()
loss = criterion(sample, target)
print(loss)

最后结果是:报错,看来不能直接这么用!

8 .BCEWithLogitsLoss 与 MultilabelSoftMarginLoss

BCEWithLogitsLoss :

这里,主要x,y的顺序,x为predict的输出(还没有sigmoid);y为真实标签,一般是[0,1],但是真实标签也可以是概率表示,如[0.1, 0.9].

可以看出,这里与 BCELoss相比,它帮你做sigmoid 操作,不需要你输出时加激活函数。

MultiLabelSoftMarginLoss :

可以看出, 后者是前者权值为1时的特例。

import torch
from torch.autograd import Variable
from torch import nn
x = Variable(torch.randn(10, 3))
y = Variable(torch.FloatTensor(10, 3).random_(2))

# double the loss for class 1
class_weight = torch.FloatTensor([1.0, 2.0, 1.0])
# double the loss for last sample
element_weight = torch.FloatTensor([1.0]*9 + [2.0]).view(-1, 1)
element_weight = element_weight.repeat(1, 3)

bce_criterion = nn.BCEWithLogitsLoss(weight=None, reduce=False)
multi_criterion = nn.MultiLabelSoftMarginLoss(weight=None, reduce=False)

bce_criterion_class = nn.BCEWithLogitsLoss(weight=class_weight, reduce=False)
multi_criterion_class = nn.MultiLabelSoftMarginLoss(weight=class_weight,
                          reduce=False)

bce_criterion_element = nn.BCEWithLogitsLoss(weight=element_weight, reduce=False)
multi_criterion_element = nn.MultiLabelSoftMarginLoss(weight=element_weight,
                           reduce=False)

bce_loss = bce_criterion(x, y)
multi_loss = multi_criterion(x, y)

bce_loss_class = bce_criterion_class(x, y)
multi_loss_class = multi_criterion_class(x, y)

print(bce_loss_class)
print(multi_loss_class)

print('bce_loss',bce_loss)
print('bce loss mean', torch.mean(bce_loss, dim = 1))
print('multi_loss', multi_loss)

9.比较BCEWithLogitsLoss和TensorFlow的 sigmoid_cross_entropy_with_logits;softmax_cross_entropy_with_logits

pytorch BCEwithLogitsLoss 参考前面8的介绍。

from torch import nn
from torch.autograd import Variable
bce_criterion = nn.BCEWithLogitsLoss(weight = None, reduce = False)
y = Variable(torch.tensor([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]],dtype=torch.float64))
logits = Variable(torch.tensor([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]],dtype=torch.float64))
bce_criterion(logits, y)

result:

tensor([[6.1442e-06, 3.0486e+00, 2.1269e+00],
    [3.0486e+00, 4.5399e-05, 1.3133e+00],
    [1.3133e+00, 2.1269e+00, 6.7153e-03],
    [1.8150e-02, 1.5023e-03, 1.4633e+00],
    [3.0486e+00, 2.4757e-03, 1.3133e+00]], dtype=torch.float64)

如果使用 TensorFlow的sigmoid_cross_entropy_with_logits,

y = np.array([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]])
logits = np.array([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]]).astype(np.float32)

sess =tf.Session()
y = np.array(y).astype(np.float32) # labels是float64的数据类型
E2 = sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=y,logits=logits))
print(E2)

result

[[6.1441933e-06 3.0485873e+00 2.1269281e+00]
 [3.0485873e+00 4.5398901e-05 1.3132617e+00]
 [1.3132617e+00 2.1269281e+00 6.7153485e-03]
 [1.8149929e-02 1.5023102e-03 1.4632825e+00]
 [3.0485873e+00 2.4756852e-03 1.3132617e+00]]

从结果来看,两个是等价的。

其实,两个损失函数都是,先预测结果sigmoid,再求交叉熵。

Keras binary_crossentropy 也是调用 Tf sigmoid_cross_entropy_with_logits.
keras binary_crossentropy 源码;


def loss_fn(y_true, y_pred, e=0.1):
  bce_loss = K.binary_crossentropy(y_true, y_pred)
  return K.mean(bce_loss, axis = -1)

y = K.variable([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]])
logits = K.variable([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]])
res = loss_fn(logits, y)
print(K.get_value(res))

from keras.losses import binary_crossentropy
print(K.get_value(binary_crossentropy(logits, y)))

result:

[-31.59192  -26.336359  -5.1384177 -38.72286  -5.0798492]
[-31.59192  -26.336359  -5.1384177 -38.72286  -5.0798492]

同样,如果是softmax_cross_entropy_with_logits的话,

y = np.array([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]])
logits = np.array([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]]).astype(np.float32)

sess =tf.Session()
y = np.array(y).astype(np.float32) # labels是float64的数据类型
E2 = sess.run(tf.nn.softmax_cross_entropy_with_logits(labels=y,
                                   logits=logits))
print(E2)

result:

[1.6878611e-04 1.0346780e-03 6.5883912e-02 2.6669841e+00 5.4985214e-02]

发现维度都已经变了,这个是 N*1维了。

即使,把上面sigmoid_cross_entropy_with_logits的结果维度改变,也是 [1.725174 1.4539648 1.1489683 0.49431157 1.4547749 ],两者还是不一样。

关于选用softmax_cross_entropy_with_logits还是sigmoid_cross_entropy_with_logits,使用softmax,精度会更好,数值稳定性更好,同时,会依赖超参数。

2 其他不常用loss

函数 作用
AdaptiveLogSoftmaxWithLoss 用于不平衡类

以上这篇Pytorch 的损失函数Loss function使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow损失函数专题详解

    一.分类问题损失函数--交叉熵(crossentropy) 交叉熵刻画了两个概率分布之间的距离,是分类问题中使用广泛的损失函数.给定两个概率分布p和q,交叉熵刻画的是两个概率分布之间的距离: 我们可以通过Softmax回归将神经网络前向传播得到的结果变成交叉熵要求的概率分布得分.在TensorFlow中,Softmax回归的参数被去掉了,只是一个额外的处理层,将神经网络的输出变成一个概率分布. 代码实现: import tensorflow as tf y_ = tf.constant([[1.

  • pytorch实现focal loss的两种方式小结

    我就废话不多说了,直接上代码吧! import torch import torch.nn.functional as F import numpy as np from torch.autograd import Variable ''' pytorch实现focal loss的两种方式(现在讨论的是基于分割任务) 在计算损失函数的过程中考虑到类别不平衡的问题,假设加上背景类别共有6个类别 ''' def compute_class_weights(histogram): classWeigh

  • Pytorch 的损失函数Loss function使用详解

    1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import

  • Pytorch 多块GPU的使用详解

    注:本文针对单个服务器上多块GPU的使用,不是多服务器多GPU的使用. 在一些实验中,由于Batch_size的限制或者希望提高训练速度等原因,我们需要使用多块GPU.本文针对Pytorch中多块GPU的使用进行说明. 1. 设置需要使用的GPU编号 import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,4" ids = [0,1] 比如我们需要使用第0和第4块GPU,只用上述三行代码即可. 其中第二行指程序只能看到第1

  • Pytorch对Himmelblau函数的优化详解

    Himmelblau函数如下: 有四个全局最小解,且值都为0,这个函数常用来检验优化算法的表现如何: 可视化函数图像: import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himmelblau(x): return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2 x = np.ar

  • PyTorch实现卷积神经网络的搭建详解

    目录 PyTorch中实现卷积的重要基础函数 1.nn.Conv2d: 2.nn.MaxPool2d(kernel_size=2) 3.nn.ReLU() 4.x.view() 全部代码 PyTorch中实现卷积的重要基础函数 1.nn.Conv2d: nn.Conv2d在pytorch中用于实现卷积. nn.Conv2d( in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1, ) 1.in_channels为输

  • 对pytorch中的梯度更新方法详解

    背景 使用pytorch时,有一个yolov3的bug,我认为涉及到学习率的调整.收集到tencent yolov3和mxnet开源的yolov3,两个优化器中的学习率设置不一样,而且使用GPU数目和batch的更新也不太一样.据此,我简单的了解了下pytorch的权重梯度的更新策略,看看能否一窥究竟. 对代码说明 共三个实验,分布写在代码中的(一)(二)(三)三个地方.运行实验时注释掉其他两个 实验及其结果 实验(三): 不使用zero_grad()时,grad累加在一起,官网是使用accum

  • 对pytorch网络层结构的数组化详解

    最近再写openpose,它的网络结构是多阶段的网络,所以写网络的时候很想用列表的方式,但是直接使用列表不能将网络中相应的部分放入到cuda中去. 其实这个问题很简单的,使用moduleList就好了. 1 我先是定义了一个函数,用来根据超参数,建立一个基础网络结构 stage = [[3, 3, 3, 1, 1], [7, 7, 7, 7, 7, 1, 1]] branches_cfg = [[[128, 128, 128, 512, 38], [128, 128, 128, 512, 19]

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b

  • Pytorch之view及view_as使用详解

    view()函数是在torch.Tensor.view()下的一个函数,可以有tensor调用,也可以有variable调用. 其作用在于返回和原tensor数据个数相同,但size不同的tensor [Numpy中的size是元素个数,但是在Pytorch中size等价为Numpy中的shape] view函数的-1参数的作用在于基于另一参数,自动计算该维度的大小 很重要的一点 view函数只能由于contiguous的张量上,具体而言,就是在内存中连续存储的张量. 具体而言,可以参看 htt

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • Pytorch之卷积层的使用详解

    1.简介(torch.nn下的) 卷积层主要使用的有3类,用于处理不同维度的数据 参数 Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kerner_size(int or tuple) - 卷积核的尺寸 stride(int or tuple, optional) - 卷积步长 padding (int or tuple, optional)- 输入的每一条边补充0的层数 dilation(int or tu

随机推荐