opencv3/C++ 使用Tracker实现简单目标跟踪

简介

MIL: TrackerMIL 以在线方式训练分类器将对象与背景分离;多实例学习避免鲁棒跟踪的漂移问题.

OLB: TrackerBoosting 基于AdaBoost算法的在线实时对象跟踪.分类器在更新步骤中使用周围背景作为反例以避免漂移问题.

MedianFlow: TrackerMedianFlow 跟踪器适用于非常平滑和可预测的运动,物体在整个序列中可见.

TLD: TrackerTLD 将长期跟踪任务分解为跟踪,学习和检测.跟踪器在帧之间跟踪对象.探测器本地化所观察到的所有外观,并在必要时纠正跟踪器.学习估计检测器的错误并进行更新以避免再出现这些错误.追踪器能够处理快速运动,部分遮挡,物体缺失等情况.

KCF: TrackerKCF 使用目标周围区域的循环矩阵采集正负样本,利用脊回归训练目标检测器,并成功的利用循环矩阵在傅里叶空间可对角化的性质将矩阵的运算转化为向量的Hadamad积,即元素的点乘,大大降低了运算量,提高了运算速度,使算法满足实时性要求.

部分相关API:

TrackerMIL

 static Ptr<TrackerMIL> create(const TrackerMIL::Params &parameters);
 CV_WRAP static Ptr<TrackerMIL> create();
struct CV_EXPORTS Params
 {
 PARAMS();
  //采样器的参数
  float samplerInitInRadius; //初始收集正面实例的半径
  int samplerInitMaxNegNum; //初始使用负样本
  float samplerSearchWinSize; //搜索窗口的大小
  float samplerTrackInRadius; //在跟踪期间收集正面实例的半径
  int samplerTrackMaxPosNum; //在追踪期间使用正面样本
  int samplerTrackMaxNegNum; //在跟踪期间使用的负样本
  int featureSetNumFeatures; //特征

  void read(const FileNode&fn);
  void write(FileStorage&fs)const;
 };

TrackerBoosting

 static Ptr<TrackerBoosting> create(const TrackerBoosting::Params &parameters);
 CV_WRAP static Ptr<TrackerBoosting> create();
 struct CV_EXPORTS Params
{
 PARAMS();
  int numClassifiers; //在OnlineBoosting算法中使用的分类器的数量
  float samplerOverlap; //搜索区域参数
  float samplerSearchFactor; //搜索区域参数
  int iterationInit; //初始迭代
  int featureSetNumFeatures; //特征
 //从文件读取参数
  void read(const FileNode&fn);
 //从文件写入参数
  void write(FileStorage&fs)const;
 };

示例

首先获取视频的第一帧,通过点击左键框选选择要跟踪的目标,点击右键确认并使用MIL开始跟踪.(从实际情况看来,算法对过程中有遮挡的情况跟踪能力较差.)

(环境:Ubuntu16.04+QT5.8+opencv3.3.1)

#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/tracking/tracker.hpp>

using namespace cv;

void draw_rectangle(int event, int x, int y, int flags, void*);
Mat firstFrame;
Point previousPoint, currentPoint;
Rect2d bbox;
int main(int argc, char *argv[])
{
 VideoCapture capture;
 Mat frame;
 frame = capture.open("/home/w/mycode/QT/img/runners.avi");
 if(!capture.isOpened())
 {
  printf("can not open ...\n");
  return -1;
 }
 //获取视频的第一帧,并框选目标
 capture.read(firstFrame);
 if(!firstFrame.empty())
 {
  namedWindow("output", WINDOW_AUTOSIZE);
  imshow("output", firstFrame);
  setMouseCallback("output", draw_rectangle, 0);
  waitKey();
 }
 //使用TrackerMIL跟踪
 Ptr<TrackerMIL> tracker= TrackerMIL::create();
 //Ptr<TrackerTLD> tracker= TrackerTLD::create();
 //Ptr<TrackerKCF> tracker = TrackerKCF::create();
 //Ptr<TrackerMedianFlow> tracker = TrackerMedianFlow::create();
 //Ptr<TrackerBoosting> tracker= TrackerBoosting::create();
 capture.read(frame);
 tracker->init(frame,bbox);
 namedWindow("output", WINDOW_AUTOSIZE);
 while (capture.read(frame))
 {
  tracker->update(frame,bbox);
  rectangle(frame,bbox, Scalar(255, 0, 0), 2, 1);
  imshow("output", frame);
  if(waitKey(20)=='q')
  return 0;
 }
 capture.release();
 destroyWindow("output");
 return 0;
}

//框选目标
void draw_rectangle(int event, int x, int y, int flags, void*)
{
 if (event == EVENT_LBUTTONDOWN)
 {
  previousPoint = Point(x, y);
 }
 else if (event == EVENT_MOUSEMOVE && (flags&EVENT_FLAG_LBUTTON))
 {
  Mat tmp;
  firstFrame.copyTo(tmp);
  currentPoint = Point(x, y);
  rectangle(tmp, previousPoint, currentPoint, Scalar(0, 255, 0, 0), 1, 8, 0);
  imshow("output", tmp);
 }
 else if (event == EVENT_LBUTTONUP)
 {
  bbox.x = previousPoint.x;
  bbox.y = previousPoint.y;
  bbox.width = abs(previousPoint.x-currentPoint.x);
  bbox.height = abs(previousPoint.y-currentPoint.y);
 }
 else if (event == EVENT_RBUTTONUP)
 {
  destroyWindow("output");
 }
}

实验对比发现:KCF速度最快,MedianFlow的速度也较快,对于无遮挡情况跟踪效果较好;TLD对部分遮挡处理的效果最好,处理时间相对较慢.

部分遮挡处理效果

MIL对部分遮挡的处理效果:

opencv::Tracker Algorithms

以上这篇opencv3/C++ 使用Tracker实现简单目标跟踪就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • opencv3/C++图像像素操作详解

    RGB图像转灰度图 RGB图像转换为灰度图时通常使用: 进行转换,以下尝试通过其他对图像像素操作的方式将RGB图像转换为灰度图像. #include<opencv2/opencv.hpp> #include<math.h> using namespace cv; int main() { //像素操作 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(src.empty()) { printf

  • opencv3/C++ HOG特征提取方式

    HOG特征 HOG(Histograms of Oriented Gradients)梯度方向直方图 通过利用梯度信息能反映图像目标的边缘信息并通过局部梯度的大小将图像局部的外观和形状特征化.在论文Histograms of Oriented Gradients for Human Detection中被提出. HOG特征的提取过程为: Gamma归一化: 计算梯度: 划分cell 组合成block,统计block直方图: 梯度直方图归一化: 收集HOG特征. Gamma归一化: 对图像颜色进行

  • opencv3/C++ 离散余弦变换DCT方式

    离散余弦变换/Discrete cosine transform, 根据离散傅里叶变换的性质,实偶函数的傅里叶变换只含实的余弦项,而数字图像都是实数矩阵,因此构造了一种实数域的变换--离散余弦变换(DCT). 离散余弦变换具有很强的"能量集中"特性,左上方称为低频数据,右下方称为高频数据.而大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分.因此也可以在图像压缩算法中用来进行有损压缩.(如JPEG压缩编码) OpenCV中dct() 在OpenCV中有专门进行离散

  • opencv3/C++图像边缘提取方式

    canny算子实现 使用track bar 调整canny算子参数,提取到合适的图像边缘. #include<iostream> #include<opencv2/opencv.hpp> using namespace cv; void trackBar(int, void*); int s1=0,s2=0; Mat src, dst; int main() { src = imread("E:/image/image/daibola.jpg"); if(src

  • opencv3/C++ 将图片转换为视频的实例

    现有一些图片按顺序放置在一文件夹jogging1\下,如图: 需要将其合并转换为一个视频. 示例: 环境:Win7+OpenCV3+VS2012 #include<opencv2/opencv.hpp> #include <stdio.h> #include <io.h> #include <string> #include <iostream> #include <fstream> using namespace std; usin

  • opencv3/C++ 使用Tracker实现简单目标跟踪

    简介 MIL: TrackerMIL 以在线方式训练分类器将对象与背景分离;多实例学习避免鲁棒跟踪的漂移问题. OLB: TrackerBoosting 基于AdaBoost算法的在线实时对象跟踪.分类器在更新步骤中使用周围背景作为反例以避免漂移问题. MedianFlow: TrackerMedianFlow 跟踪器适用于非常平滑和可预测的运动,物体在整个序列中可见. TLD: TrackerTLD 将长期跟踪任务分解为跟踪,学习和检测.跟踪器在帧之间跟踪对象.探测器本地化所观察到的所有外观,

  • opencv3/C++基于颜色的目标跟踪方式

    inRange函数 void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst); src:输入图像: lowerb:下边界数组,阈值下限: upperb:上边界数组,阈值上限: dst:输出图像: 颜色范围如图: 示例: 捕获摄像头中的黄色方块 #include<opencv2/opencv.hpp> using namespace cv; int main() { VideoCaptu

  • 基于OpenCV4.2实现单目标跟踪

    目录 1.什么是目标跟踪 2.跟踪与检测 3.使用OpenCV4实现对象跟踪 3.1使用OpenCV4实现对象跟踪C++代码 3.2使用OpenCV4实现对象跟踪Python代码 4.跟踪算法解析 4.1BOOSTINGTracker 4.2MILTracker 4.3KCFTracker 4.4TLDTracker 4.5MEDIANFLOWTracker 4.6GOTURNtracker 4.7MOSSEtracker 4.8CSRTtracker 在本教程中,我们将学习使用OpenCV跟踪

  • 基于OpenCV目标跟踪实现人员计数器

    目录 1.了解对象检测与对象跟踪 2.结合对象检测和对象跟踪 3.项目结构 4.结合对象跟踪算法 5.创建可追踪对象 6.使用OpenCV+Python实现我们的人员计数器 7.完整代码 people_counter.py centroidtracker.py trackableobject.py 8.运行结果 9.改进我们的人员计数器应用程序 BONUS 在本教程中,您将学习如何使用 OpenCV 和 Python 构建人员计数器.使用 OpenCV,我们将实时计算进或出百货商店的人数. 在今

  • python+opencv实现目标跟踪过程

    目录 python opencv实现目标跟踪 这里根据官网示例写了一个追踪器类 python opencv实现目标跟踪 python-opencv3.0新增了一些比较有用的追踪器算法 这里根据官网示例写了一个追踪器类 程序只能运行在安装有opencv3.0以上版本和对应的contrib模块的python解释器 #encoding=utf-8 import cv2 from items import MessageItem import time import numpy as np ''' 监视

  • Python使用OPENCV的目标跟踪算法实现自动视频标注效果

    先上效果 1.首先,要使用opencv的目标跟踪算法,必须要有opencv环境 使用:opencv==4.4.0 和 opencv-contrib-python==4.4.0.46,lxml   这三个环境包. 也可以使用以下方法进行下载 : pip install opencv-python==4.4.0 pip install opencv-contrib-python==4.4.0.4 pip install lxml 2.使用方法: (1):英文状态下的 "s" 是进行标注 (

  • Python+OpenCV目标跟踪实现基本的运动检测

    目标跟踪是对摄像头视频中的移动目标进行定位的过程,有着非常广泛的应用.实时目标跟踪是许多计算机视觉应用的重要任务,如监控.基于感知的用户界面.增强现实.基于对象的视频压缩以及辅助驾驶等. 有很多实现视频目标跟踪的方法,当跟踪所有移动目标时,帧之间的差异会变的有用:当跟踪视频中移动的手时,基于皮肤颜色的均值漂移方法是最好的解决方案:当知道跟踪对象的一方面时,模板匹配是不错的技术. 本文代码是做一个基本的运动检测 考虑的是"背景帧"与其它帧之间的差异 这种方法检测结果还是挺不错的,但是需要

  • Opencv基于CamShift算法实现目标跟踪

    CamShift算法全称是"Continuously Adaptive Mean-Shift"(连续的自适应MeanShift算法),是对MeanShift算法的改进算法,可以在跟踪的过程中随着目标大小的变化实时调整搜索窗口大小,对于视频序列中的每一帧还是采用MeanShift来寻找最优迭代结果,至于如何实现自动调整窗口大小的,可以查到的论述较少,我的理解是通过对MeanShift算法中零阶矩的判断实现的. 在MeanShift算法中寻找搜索窗口的质心用到窗口的零阶矩M00和一阶矩M1

  • python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法(实例代码)

    单目标跟踪: 直接调用opencv中封装的tracker即可. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 5 17:50:47 2020 第四章 kcf跟踪 @author: youxinlin """ import cv2 from items import MessageItem import time import numpy as np ''

  • python目标检测基于opencv实现目标追踪示例

    目录 主要代码 信息封装类 更新utils python-opencv3.0新增了一些比较有用的追踪器算法,这里根据官网示例写了一个追踪器类 程序只能运行在安装有opencv3.0以上版本和对应的contrib模块的python解释器 主要代码 #encoding=utf-8 import cv2 from items import MessageItem import time import numpy as np ''' 监视者模块,负责入侵检测,目标跟踪 ''' class WatchDo

随机推荐